{"title":"塞米卢克斯基-门迪姆斯基地层碳酸盐沉积有机物在热液条件下的转化研究","authors":"S.M. Petrov , A.I. Lakhova , E.G. Moiseeva , A.G. Safiulina","doi":"10.1016/j.petlm.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents the results of studies on the transformation of the organic matter of siliceous-clayey carbonate rocks of the Semiluksko–Mendymsky horizon of the Romashkino oil field in a hydrothermal fluid for an hour (with a water-to-rock ratio of 33) at 340°C and 380°C and pressures of 17 and 20 MPa. As a result of hydrothermal treatment, at 340°C and 17 MPa, based on nitrogen porosimetry and electron microscopy data, transformations of rock-forming minerals in the rock are observed. They lead to an increase in the volume and average diameter of mesopores in it and the formation of micropores, as well, which improve its filtration properties. At the same time, the amount of kerogen in the composition of the organic matter decreases and the yield of the petroleum hydrocarbon extract increases, in which, according to the SARA analysis, the content of asphaltenes increases and the content of resins, aromatic and saturated hydrocarbons decreases. In the composition of aroatic hydrocarbons, the proportion of alkyltrimethylbenzenes and dibenzothiophenes increases, phenanthrene homologues appear, and in the composition of saturated hydrocarbons, the amount of iso-structure alkanes decreases relative to the content of linear alkanes. Raising the temperature and pressure of the hydrothermal fluid to 380°С and 20 MPa increases the degree of kerogen conversion from 12.4% to 23.6%. At the same time, changes occurring in the component composition of petroleum hydrocarbon extracts remains similar to the experiments carried out at 340°C and 17 MPa; the content of naphthalenes decreases, the content of dibenzothiophenes increases and C<sub>11</sub>–C<sub>17</sub>, C<sub>19</sub>–C<sub>22</sub> alkyltrimethylbenzenes appear. According to IR spectroscopy, with increasing temperature and pressure of the hydrothermal fluid the intensity of the absorption bands of the aromatic ring, aliphatic fragments, and oxygen-containing groups increases in resins; the structural-group composition of asphaltenes changes little: aromaticity and the content of condensed structures slightly increase. The revealed distinctive features in the composition of organic matter after hydrothermal impact on siliceous-clayey carbonate rocks confirm the concept of staged destruction of kerogen, when large structural heteroatomic blocks (asphaltenes) are split off at the initial stages. Changes occurring in the composition of petroleum hydrocarbon extracts indicate their involvement in the process of hydrothermal transformation of organic matter of siliceous-clayey carmbonate rocks with the predominant reactions of dehydrogenation of naphthenic compounds and oxidative polycondensation of aromatic structures. The data of electron microscopy and nitrogen porosimetry of rocks after hydrothermal exposure at 380°С and 20 MPa indicate a deterioration in their reservoir properties. The most optimal thermobaric conditions of the hydrothermal fluid for the generation of petroleum hydrocarbons from kerogen of siliceous-clayey carbonate deposits of the Semiluksko–Mendymsky horizon of the Romashkino field, which improve their reservoir properties, are 340°С and 17 MPa; with implication of hard-to-recover heavy hydrocarbon resources and well-established catalytic methods of in-situ conversion.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000433/pdfft?md5=19a48947e03d9129a1ee0232ffcfa150&pid=1-s2.0-S2405656123000433-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of the transformation of organic matter of carbonate deposits of the Semiluksky–Mendymsky horizon under hydrothermal conditions\",\"authors\":\"S.M. Petrov , A.I. Lakhova , E.G. Moiseeva , A.G. Safiulina\",\"doi\":\"10.1016/j.petlm.2023.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents the results of studies on the transformation of the organic matter of siliceous-clayey carbonate rocks of the Semiluksko–Mendymsky horizon of the Romashkino oil field in a hydrothermal fluid for an hour (with a water-to-rock ratio of 33) at 340°C and 380°C and pressures of 17 and 20 MPa. As a result of hydrothermal treatment, at 340°C and 17 MPa, based on nitrogen porosimetry and electron microscopy data, transformations of rock-forming minerals in the rock are observed. They lead to an increase in the volume and average diameter of mesopores in it and the formation of micropores, as well, which improve its filtration properties. At the same time, the amount of kerogen in the composition of the organic matter decreases and the yield of the petroleum hydrocarbon extract increases, in which, according to the SARA analysis, the content of asphaltenes increases and the content of resins, aromatic and saturated hydrocarbons decreases. In the composition of aroatic hydrocarbons, the proportion of alkyltrimethylbenzenes and dibenzothiophenes increases, phenanthrene homologues appear, and in the composition of saturated hydrocarbons, the amount of iso-structure alkanes decreases relative to the content of linear alkanes. Raising the temperature and pressure of the hydrothermal fluid to 380°С and 20 MPa increases the degree of kerogen conversion from 12.4% to 23.6%. At the same time, changes occurring in the component composition of petroleum hydrocarbon extracts remains similar to the experiments carried out at 340°C and 17 MPa; the content of naphthalenes decreases, the content of dibenzothiophenes increases and C<sub>11</sub>–C<sub>17</sub>, C<sub>19</sub>–C<sub>22</sub> alkyltrimethylbenzenes appear. According to IR spectroscopy, with increasing temperature and pressure of the hydrothermal fluid the intensity of the absorption bands of the aromatic ring, aliphatic fragments, and oxygen-containing groups increases in resins; the structural-group composition of asphaltenes changes little: aromaticity and the content of condensed structures slightly increase. The revealed distinctive features in the composition of organic matter after hydrothermal impact on siliceous-clayey carbonate rocks confirm the concept of staged destruction of kerogen, when large structural heteroatomic blocks (asphaltenes) are split off at the initial stages. Changes occurring in the composition of petroleum hydrocarbon extracts indicate their involvement in the process of hydrothermal transformation of organic matter of siliceous-clayey carmbonate rocks with the predominant reactions of dehydrogenation of naphthenic compounds and oxidative polycondensation of aromatic structures. The data of electron microscopy and nitrogen porosimetry of rocks after hydrothermal exposure at 380°С and 20 MPa indicate a deterioration in their reservoir properties. The most optimal thermobaric conditions of the hydrothermal fluid for the generation of petroleum hydrocarbons from kerogen of siliceous-clayey carbonate deposits of the Semiluksko–Mendymsky horizon of the Romashkino field, which improve their reservoir properties, are 340°С and 17 MPa; with implication of hard-to-recover heavy hydrocarbon resources and well-established catalytic methods of in-situ conversion.</p></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405656123000433/pdfft?md5=19a48947e03d9129a1ee0232ffcfa150&pid=1-s2.0-S2405656123000433-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656123000433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation of the transformation of organic matter of carbonate deposits of the Semiluksky–Mendymsky horizon under hydrothermal conditions
The paper presents the results of studies on the transformation of the organic matter of siliceous-clayey carbonate rocks of the Semiluksko–Mendymsky horizon of the Romashkino oil field in a hydrothermal fluid for an hour (with a water-to-rock ratio of 33) at 340°C and 380°C and pressures of 17 and 20 MPa. As a result of hydrothermal treatment, at 340°C and 17 MPa, based on nitrogen porosimetry and electron microscopy data, transformations of rock-forming minerals in the rock are observed. They lead to an increase in the volume and average diameter of mesopores in it and the formation of micropores, as well, which improve its filtration properties. At the same time, the amount of kerogen in the composition of the organic matter decreases and the yield of the petroleum hydrocarbon extract increases, in which, according to the SARA analysis, the content of asphaltenes increases and the content of resins, aromatic and saturated hydrocarbons decreases. In the composition of aroatic hydrocarbons, the proportion of alkyltrimethylbenzenes and dibenzothiophenes increases, phenanthrene homologues appear, and in the composition of saturated hydrocarbons, the amount of iso-structure alkanes decreases relative to the content of linear alkanes. Raising the temperature and pressure of the hydrothermal fluid to 380°С and 20 MPa increases the degree of kerogen conversion from 12.4% to 23.6%. At the same time, changes occurring in the component composition of petroleum hydrocarbon extracts remains similar to the experiments carried out at 340°C and 17 MPa; the content of naphthalenes decreases, the content of dibenzothiophenes increases and C11–C17, C19–C22 alkyltrimethylbenzenes appear. According to IR spectroscopy, with increasing temperature and pressure of the hydrothermal fluid the intensity of the absorption bands of the aromatic ring, aliphatic fragments, and oxygen-containing groups increases in resins; the structural-group composition of asphaltenes changes little: aromaticity and the content of condensed structures slightly increase. The revealed distinctive features in the composition of organic matter after hydrothermal impact on siliceous-clayey carbonate rocks confirm the concept of staged destruction of kerogen, when large structural heteroatomic blocks (asphaltenes) are split off at the initial stages. Changes occurring in the composition of petroleum hydrocarbon extracts indicate their involvement in the process of hydrothermal transformation of organic matter of siliceous-clayey carmbonate rocks with the predominant reactions of dehydrogenation of naphthenic compounds and oxidative polycondensation of aromatic structures. The data of electron microscopy and nitrogen porosimetry of rocks after hydrothermal exposure at 380°С and 20 MPa indicate a deterioration in their reservoir properties. The most optimal thermobaric conditions of the hydrothermal fluid for the generation of petroleum hydrocarbons from kerogen of siliceous-clayey carbonate deposits of the Semiluksko–Mendymsky horizon of the Romashkino field, which improve their reservoir properties, are 340°С and 17 MPa; with implication of hard-to-recover heavy hydrocarbon resources and well-established catalytic methods of in-situ conversion.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing