具有泛函时滞的分数阶扩散波方程的数值方法

IF 0.3 Q4 MATHEMATICS
V. Pimenov, E. Tashirova
{"title":"具有泛函时滞的分数阶扩散波方程的数值方法","authors":"V. Pimenov, E. Tashirova","doi":"10.35634/2226-3594-2021-57-07","DOIUrl":null,"url":null,"abstract":"For a fractional diffusion-wave equation with a nonlinear effect of functional delay, an implicit numerical method is constructed. The scheme is based on the L2-method of approximation of the fractional derivative of the order from 1 to 2, interpolation and extrapolation with the given properties of discrete prehistory and an analogue of the Crank-Nicolson method. The order of convergence of the method is investigated using the ideas of the general theory of difference schemes with heredity. The order of convergence of the method is more significant than in previously known methods, depending on the order of the starting values. The main point of the proof is the use of the stability of the L2-method. The results of comparing numerical experiments with other schemes are presented: a purely implicit method and a purely explicit method, these results showed, in general, the advantages of the proposed scheme.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical method for fractional diffusion-wave equations with functional delay\",\"authors\":\"V. Pimenov, E. Tashirova\",\"doi\":\"10.35634/2226-3594-2021-57-07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a fractional diffusion-wave equation with a nonlinear effect of functional delay, an implicit numerical method is constructed. The scheme is based on the L2-method of approximation of the fractional derivative of the order from 1 to 2, interpolation and extrapolation with the given properties of discrete prehistory and an analogue of the Crank-Nicolson method. The order of convergence of the method is investigated using the ideas of the general theory of difference schemes with heredity. The order of convergence of the method is more significant than in previously known methods, depending on the order of the starting values. The main point of the proof is the use of the stability of the L2-method. The results of comparing numerical experiments with other schemes are presented: a purely implicit method and a purely explicit method, these results showed, in general, the advantages of the proposed scheme.\",\"PeriodicalId\":42053,\"journal\":{\"name\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/2226-3594-2021-57-07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2021-57-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一类具有非线性泛函时滞效应的分数阶扩散波方程,构造了一种隐式数值方法。该方案基于1到2阶分数阶导数的l2逼近方法、具有离散史前性质的内插和外推以及类似的Crank-Nicolson方法。利用具有遗传的差分格式的一般理论,研究了该方法的收敛阶。该方法的收敛顺序比以前已知的方法更重要,这取决于起始值的顺序。证明的要点是利用l2法的稳定性。给出了与其他格式的数值实验结果:纯隐式方法和纯显式方法,这些结果表明,总的来说,该格式的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical method for fractional diffusion-wave equations with functional delay
For a fractional diffusion-wave equation with a nonlinear effect of functional delay, an implicit numerical method is constructed. The scheme is based on the L2-method of approximation of the fractional derivative of the order from 1 to 2, interpolation and extrapolation with the given properties of discrete prehistory and an analogue of the Crank-Nicolson method. The order of convergence of the method is investigated using the ideas of the general theory of difference schemes with heredity. The order of convergence of the method is more significant than in previously known methods, depending on the order of the starting values. The main point of the proof is the use of the stability of the L2-method. The results of comparing numerical experiments with other schemes are presented: a purely implicit method and a purely explicit method, these results showed, in general, the advantages of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信