{"title":"混合非线性广义Tricomi方程的爆破和寿命估计","authors":"M. Hamouda, M. Hamza","doi":"10.21494/iste.op.2021.0698","DOIUrl":null,"url":null,"abstract":"We study in this article the blow-up of the solution of the generalized Tricomi equation in the presence of two mixed nonlinearities, namely we consider $$ (Tr) \\hspace{1cm} u_{tt}-t^{2m}\\Delta u=|u_t|^p+|u|^q, \\quad \\mbox{in}\\ \\mathbb{R}^N\\times[0,\\infty),$$ with small initial data, where $m\\ge0$.\\\\ For the problem $(Tr)$ with $m=0$, which corresponds to the uniform wave speed of propagation, it is known that the presence of mixed nonlinearities generates a new blow-up region in comparison with the case of a one nonlinearity ($|u_t|^p$ or $|u|^q$). We show in the present work that the competition between the two nonlinearities still yields a new blow region for the Tricomi equation $(Tr)$ with $m\\ge0$, and we derive an estimate of the lifespan in terms of the Tricomi parameter $m$. As an application of the method developed for the study of the equation $(Tr)$ we obtain with a different approach the same blow-up result as in \\cite{Lai2020} when we consider only one time-derivative nonlinearity, namely we keep only $|u_t|^p$ in the right-hand side of $(Tr)$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"2010 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Blow-up and lifespan estimate for the generalized Tricomi equation with mixed nonlinearities\",\"authors\":\"M. Hamouda, M. Hamza\",\"doi\":\"10.21494/iste.op.2021.0698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study in this article the blow-up of the solution of the generalized Tricomi equation in the presence of two mixed nonlinearities, namely we consider $$ (Tr) \\\\hspace{1cm} u_{tt}-t^{2m}\\\\Delta u=|u_t|^p+|u|^q, \\\\quad \\\\mbox{in}\\\\ \\\\mathbb{R}^N\\\\times[0,\\\\infty),$$ with small initial data, where $m\\\\ge0$.\\\\\\\\ For the problem $(Tr)$ with $m=0$, which corresponds to the uniform wave speed of propagation, it is known that the presence of mixed nonlinearities generates a new blow-up region in comparison with the case of a one nonlinearity ($|u_t|^p$ or $|u|^q$). We show in the present work that the competition between the two nonlinearities still yields a new blow region for the Tricomi equation $(Tr)$ with $m\\\\ge0$, and we derive an estimate of the lifespan in terms of the Tricomi parameter $m$. As an application of the method developed for the study of the equation $(Tr)$ we obtain with a different approach the same blow-up result as in \\\\cite{Lai2020} when we consider only one time-derivative nonlinearity, namely we keep only $|u_t|^p$ in the right-hand side of $(Tr)$.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"2010 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21494/iste.op.2021.0698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21494/iste.op.2021.0698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blow-up and lifespan estimate for the generalized Tricomi equation with mixed nonlinearities
We study in this article the blow-up of the solution of the generalized Tricomi equation in the presence of two mixed nonlinearities, namely we consider $$ (Tr) \hspace{1cm} u_{tt}-t^{2m}\Delta u=|u_t|^p+|u|^q, \quad \mbox{in}\ \mathbb{R}^N\times[0,\infty),$$ with small initial data, where $m\ge0$.\\ For the problem $(Tr)$ with $m=0$, which corresponds to the uniform wave speed of propagation, it is known that the presence of mixed nonlinearities generates a new blow-up region in comparison with the case of a one nonlinearity ($|u_t|^p$ or $|u|^q$). We show in the present work that the competition between the two nonlinearities still yields a new blow region for the Tricomi equation $(Tr)$ with $m\ge0$, and we derive an estimate of the lifespan in terms of the Tricomi parameter $m$. As an application of the method developed for the study of the equation $(Tr)$ we obtain with a different approach the same blow-up result as in \cite{Lai2020} when we consider only one time-derivative nonlinearity, namely we keep only $|u_t|^p$ in the right-hand side of $(Tr)$.