混合非线性广义Tricomi方程的爆破和寿命估计

M. Hamouda, M. Hamza
{"title":"混合非线性广义Tricomi方程的爆破和寿命估计","authors":"M. Hamouda, M. Hamza","doi":"10.21494/iste.op.2021.0698","DOIUrl":null,"url":null,"abstract":"We study in this article the blow-up of the solution of the generalized Tricomi equation in the presence of two mixed nonlinearities, namely we consider $$ (Tr) \\hspace{1cm} u_{tt}-t^{2m}\\Delta u=|u_t|^p+|u|^q, \\quad \\mbox{in}\\ \\mathbb{R}^N\\times[0,\\infty),$$ with small initial data, where $m\\ge0$.\\\\ For the problem $(Tr)$ with $m=0$, which corresponds to the uniform wave speed of propagation, it is known that the presence of mixed nonlinearities generates a new blow-up region in comparison with the case of a one nonlinearity ($|u_t|^p$ or $|u|^q$). We show in the present work that the competition between the two nonlinearities still yields a new blow region for the Tricomi equation $(Tr)$ with $m\\ge0$, and we derive an estimate of the lifespan in terms of the Tricomi parameter $m$. As an application of the method developed for the study of the equation $(Tr)$ we obtain with a different approach the same blow-up result as in \\cite{Lai2020} when we consider only one time-derivative nonlinearity, namely we keep only $|u_t|^p$ in the right-hand side of $(Tr)$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"2010 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Blow-up and lifespan estimate for the generalized Tricomi equation with mixed nonlinearities\",\"authors\":\"M. Hamouda, M. Hamza\",\"doi\":\"10.21494/iste.op.2021.0698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study in this article the blow-up of the solution of the generalized Tricomi equation in the presence of two mixed nonlinearities, namely we consider $$ (Tr) \\\\hspace{1cm} u_{tt}-t^{2m}\\\\Delta u=|u_t|^p+|u|^q, \\\\quad \\\\mbox{in}\\\\ \\\\mathbb{R}^N\\\\times[0,\\\\infty),$$ with small initial data, where $m\\\\ge0$.\\\\\\\\ For the problem $(Tr)$ with $m=0$, which corresponds to the uniform wave speed of propagation, it is known that the presence of mixed nonlinearities generates a new blow-up region in comparison with the case of a one nonlinearity ($|u_t|^p$ or $|u|^q$). We show in the present work that the competition between the two nonlinearities still yields a new blow region for the Tricomi equation $(Tr)$ with $m\\\\ge0$, and we derive an estimate of the lifespan in terms of the Tricomi parameter $m$. As an application of the method developed for the study of the equation $(Tr)$ we obtain with a different approach the same blow-up result as in \\\\cite{Lai2020} when we consider only one time-derivative nonlinearity, namely we keep only $|u_t|^p$ in the right-hand side of $(Tr)$.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"2010 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21494/iste.op.2021.0698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21494/iste.op.2021.0698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了两种混合非线性条件下广义Tricomi方程解的爆破问题,即考虑$$ (Tr) \hspace{1cm} u_{tt}-t^{2m}\Delta u=|u_t|^p+|u|^q, \quad \mbox{in}\ \mathbb{R}^N\times[0,\infty),$$初始数据较小,其中$m\ge0$。\\ 对于具有$m=0$的问题$(Tr)$,它对应于均匀波传播速度,已知混合非线性的存在与单一非线性($|u_t|^p$或$|u|^q$)的情况相比产生了一个新的爆炸区域。我们在目前的工作中表明,这两个非线性之间的竞争仍然产生了一个新的打击区域为Tricomi方程$(Tr)$与$m\ge0$,我们得出了Tricomi参数方面的寿命估计$m$。作为研究方程$(Tr)$的方法的一个应用,当我们只考虑一个时间导数非线性时,我们用不同的方法得到与\cite{Lai2020}相同的爆破结果,即我们只在$(Tr)$的右侧保留$|u_t|^p$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up and lifespan estimate for the generalized Tricomi equation with mixed nonlinearities
We study in this article the blow-up of the solution of the generalized Tricomi equation in the presence of two mixed nonlinearities, namely we consider $$ (Tr) \hspace{1cm} u_{tt}-t^{2m}\Delta u=|u_t|^p+|u|^q, \quad \mbox{in}\ \mathbb{R}^N\times[0,\infty),$$ with small initial data, where $m\ge0$.\\ For the problem $(Tr)$ with $m=0$, which corresponds to the uniform wave speed of propagation, it is known that the presence of mixed nonlinearities generates a new blow-up region in comparison with the case of a one nonlinearity ($|u_t|^p$ or $|u|^q$). We show in the present work that the competition between the two nonlinearities still yields a new blow region for the Tricomi equation $(Tr)$ with $m\ge0$, and we derive an estimate of the lifespan in terms of the Tricomi parameter $m$. As an application of the method developed for the study of the equation $(Tr)$ we obtain with a different approach the same blow-up result as in \cite{Lai2020} when we consider only one time-derivative nonlinearity, namely we keep only $|u_t|^p$ in the right-hand side of $(Tr)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信