振荡压力梯度下通过矩形管道的分数阶广义麦克斯韦流体

IF 0.4 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Kinza Arshad
{"title":"振荡压力梯度下通过矩形管道的分数阶广义麦克斯韦流体","authors":"Kinza Arshad","doi":"10.52700/msa.v1i1.2","DOIUrl":null,"url":null,"abstract":"Analytical solution for the flow of an unsteady GMHD fluid in a rectangular duct due to oscillating pressure gradient is studied. The velocity field and tangential tensions are calculated by applying double finite-Fourier sine transform & Laplace transforms. These are represented as integral and series form in the form of G-functions. The fluid flow is observed in the absence of MHD and porosity.","PeriodicalId":42896,"journal":{"name":"Annals of Mathematical Sciences and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Generalized-Maxwell fluid through Rectangular duct under an Oscillating pressure Gradient\",\"authors\":\"Kinza Arshad\",\"doi\":\"10.52700/msa.v1i1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analytical solution for the flow of an unsteady GMHD fluid in a rectangular duct due to oscillating pressure gradient is studied. The velocity field and tangential tensions are calculated by applying double finite-Fourier sine transform & Laplace transforms. These are represented as integral and series form in the form of G-functions. The fluid flow is observed in the absence of MHD and porosity.\",\"PeriodicalId\":42896,\"journal\":{\"name\":\"Annals of Mathematical Sciences and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52700/msa.v1i1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52700/msa.v1i1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

研究了压力梯度振荡作用下非定常GMHD流体在矩形管道内流动的解析解。采用双有限傅里叶正弦变换和拉普拉斯变换计算了速度场和切向张力。这些以g函数的形式表示为积分和级数形式。在没有MHD和孔隙度的情况下观察流体流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Generalized-Maxwell fluid through Rectangular duct under an Oscillating pressure Gradient
Analytical solution for the flow of an unsteady GMHD fluid in a rectangular duct due to oscillating pressure gradient is studied. The velocity field and tangential tensions are calculated by applying double finite-Fourier sine transform & Laplace transforms. These are represented as integral and series form in the form of G-functions. The fluid flow is observed in the absence of MHD and porosity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematical Sciences and Applications
Annals of Mathematical Sciences and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信