{"title":"公共自行车共享系统的众包动态重新定位策略","authors":"I-Lin Wang, Chen-Tai Hou","doi":"10.3934/naco.2021049","DOIUrl":null,"url":null,"abstract":"Public bike sharing systems have become the most popular shared economy application in transportation. The convenience of this system depends on the availability of bikes and empty racks. One of the major challenges in operating a bike sharing system is the repositioning of bikes between rental sites to maintain sufficient bike inventory in each station at all times. Most systems hire trucks to conduct dynamic repositioning of bikes among rental sites. We have analyzed a commonly used repositioning scheme and have demonstrated its ineffectiveness. To realize a higher quality of service, we proposed a crowdsourced dynamic repositioning strategy: first, we analyzed the historical rental data via the random forest algorithm and identified important factors for demand forecasting. Second, considering 30-minute periods, we calculated the optimal bike inventory via integer programming for each rental site in each time period with a sufficient crowd for repositioning bikes. Then, we proposed a minimum cost network flow model in a time-space network for calculating the optimal voluntary rider flows for each period based on the current bike inventory, which is adjusted according to the forecasted demands. The results of computational experiments on real-world data demonstrate that our crowdsourced repositioning strategy may reduce unmet rental demands by more than 30% during rush hours compared to conventional trucks.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A crowdsourced dynamic repositioning strategy for public bike sharing systems\",\"authors\":\"I-Lin Wang, Chen-Tai Hou\",\"doi\":\"10.3934/naco.2021049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Public bike sharing systems have become the most popular shared economy application in transportation. The convenience of this system depends on the availability of bikes and empty racks. One of the major challenges in operating a bike sharing system is the repositioning of bikes between rental sites to maintain sufficient bike inventory in each station at all times. Most systems hire trucks to conduct dynamic repositioning of bikes among rental sites. We have analyzed a commonly used repositioning scheme and have demonstrated its ineffectiveness. To realize a higher quality of service, we proposed a crowdsourced dynamic repositioning strategy: first, we analyzed the historical rental data via the random forest algorithm and identified important factors for demand forecasting. Second, considering 30-minute periods, we calculated the optimal bike inventory via integer programming for each rental site in each time period with a sufficient crowd for repositioning bikes. Then, we proposed a minimum cost network flow model in a time-space network for calculating the optimal voluntary rider flows for each period based on the current bike inventory, which is adjusted according to the forecasted demands. The results of computational experiments on real-world data demonstrate that our crowdsourced repositioning strategy may reduce unmet rental demands by more than 30% during rush hours compared to conventional trucks.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2021049\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A crowdsourced dynamic repositioning strategy for public bike sharing systems
Public bike sharing systems have become the most popular shared economy application in transportation. The convenience of this system depends on the availability of bikes and empty racks. One of the major challenges in operating a bike sharing system is the repositioning of bikes between rental sites to maintain sufficient bike inventory in each station at all times. Most systems hire trucks to conduct dynamic repositioning of bikes among rental sites. We have analyzed a commonly used repositioning scheme and have demonstrated its ineffectiveness. To realize a higher quality of service, we proposed a crowdsourced dynamic repositioning strategy: first, we analyzed the historical rental data via the random forest algorithm and identified important factors for demand forecasting. Second, considering 30-minute periods, we calculated the optimal bike inventory via integer programming for each rental site in each time period with a sufficient crowd for repositioning bikes. Then, we proposed a minimum cost network flow model in a time-space network for calculating the optimal voluntary rider flows for each period based on the current bike inventory, which is adjusted according to the forecasted demands. The results of computational experiments on real-world data demonstrate that our crowdsourced repositioning strategy may reduce unmet rental demands by more than 30% during rush hours compared to conventional trucks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.