{"title":"复型Fibonacci p-序列","authors":"Ö. Deveci, A. Shannon, E. Karaduman","doi":"10.52846/ami.v49i2.1534","DOIUrl":null,"url":null,"abstract":"In this paper, we define a new sequence which is called the complex-type Fibonacci p-sequence and we obtain the generating matrix of this complex-type Fibonacci p-sequence. We also derive the determinantal and the permanental representations. Then, using the roots of the characteristic polynomial of the complex-type Fibonacci p-sequence, we produce the Binet formula for this defined sequence. In addition, we give the combinatorial representations, the generating function, the exponential representation and the sums of the complex-type Fibonacci p-numbers.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"16 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complex-type Fibonacci p-Sequences\",\"authors\":\"Ö. Deveci, A. Shannon, E. Karaduman\",\"doi\":\"10.52846/ami.v49i2.1534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define a new sequence which is called the complex-type Fibonacci p-sequence and we obtain the generating matrix of this complex-type Fibonacci p-sequence. We also derive the determinantal and the permanental representations. Then, using the roots of the characteristic polynomial of the complex-type Fibonacci p-sequence, we produce the Binet formula for this defined sequence. In addition, we give the combinatorial representations, the generating function, the exponential representation and the sums of the complex-type Fibonacci p-numbers.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v49i2.1534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v49i2.1534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we define a new sequence which is called the complex-type Fibonacci p-sequence and we obtain the generating matrix of this complex-type Fibonacci p-sequence. We also derive the determinantal and the permanental representations. Then, using the roots of the characteristic polynomial of the complex-type Fibonacci p-sequence, we produce the Binet formula for this defined sequence. In addition, we give the combinatorial representations, the generating function, the exponential representation and the sums of the complex-type Fibonacci p-numbers.