复型Fibonacci p-序列

IF 0.5 Q3 MATHEMATICS
Ö. Deveci, A. Shannon, E. Karaduman
{"title":"复型Fibonacci p-序列","authors":"Ö. Deveci, A. Shannon, E. Karaduman","doi":"10.52846/ami.v49i2.1534","DOIUrl":null,"url":null,"abstract":"In this paper, we define a new sequence which is called the complex-type Fibonacci p-sequence and we obtain the generating matrix of this complex-type Fibonacci p-sequence. We also derive the determinantal and the permanental representations. Then, using the roots of the characteristic polynomial of the complex-type Fibonacci p-sequence, we produce the Binet formula for this defined sequence. In addition, we give the combinatorial representations, the generating function, the exponential representation and the sums of the complex-type Fibonacci p-numbers.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"16 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complex-type Fibonacci p-Sequences\",\"authors\":\"Ö. Deveci, A. Shannon, E. Karaduman\",\"doi\":\"10.52846/ami.v49i2.1534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define a new sequence which is called the complex-type Fibonacci p-sequence and we obtain the generating matrix of this complex-type Fibonacci p-sequence. We also derive the determinantal and the permanental representations. Then, using the roots of the characteristic polynomial of the complex-type Fibonacci p-sequence, we produce the Binet formula for this defined sequence. In addition, we give the combinatorial representations, the generating function, the exponential representation and the sums of the complex-type Fibonacci p-numbers.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v49i2.1534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v49i2.1534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了一个新的序列,称为复型Fibonacci p序列,并得到了该复型Fibonacci p序列的生成矩阵。我们也推导出行列式和永久表示。然后,利用复型Fibonacci p序列的特征多项式的根,给出了该序列的Binet公式。此外,我们还给出了复型Fibonacci p数的组合表示、生成函数、指数表示和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complex-type Fibonacci p-Sequences
In this paper, we define a new sequence which is called the complex-type Fibonacci p-sequence and we obtain the generating matrix of this complex-type Fibonacci p-sequence. We also derive the determinantal and the permanental representations. Then, using the roots of the characteristic polynomial of the complex-type Fibonacci p-sequence, we produce the Binet formula for this defined sequence. In addition, we give the combinatorial representations, the generating function, the exponential representation and the sums of the complex-type Fibonacci p-numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信