铅(Pb2+)引起椭圆小球藻叶绿素相关变化和氧化损伤

Matouke M. Moise
{"title":"铅(Pb2+)引起椭圆小球藻叶绿素相关变化和氧化损伤","authors":"Matouke M. Moise","doi":"10.21472/bjbs.061412","DOIUrl":null,"url":null,"abstract":"\n The increasing production of anthropological wastes containing heavy metals has resulted to their discharge and contamination into freshwater ecosystems. Hence, the effects of heavy metals are of health concern for aquatic biodiversity. This study investigated the short term effects of Pb2+ (0.0, 10, 20, 40, 60, 80 and 100 µg.L-1) on the biomass (cell density, chlorophyll a, b) and antioxidant (catalase (CAT), superoxide dismutase (SOD), guiacol peroxidase (GPx), glutathione reductase (GRx), and malondialdehyde (MDA)). Chlorella ellipsoides (Chlorophyceae) was sensitive to Pb2+, a significant decrease (p < 0.05) of chlorophyll a and b was observed with increasing concentrations of Pb2+. Antioxidant Catalase, SOD, GPx and GRx relatively decreased significantly (p < 0.05) after exposure of microalga to Pb2+. However, MDA increased significantly (p < 0.05) after microalgae was exposed to Pb2+. The finding of this study indicates that exogenous concentrations are harmful for the welfare of C. ellipsoides. This study is important as it demonstrates the potential impact of Pb2+ on microalgae. Field studies in African freshwater biodiversity and monitoring of aquatic ecosystems are recommended to assess the level and impact of Pb2+ in aquatic ecosystems.\n","PeriodicalId":9319,"journal":{"name":"Brazilian Journal of Biological Sciences","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lead (Pb2+) causes chlorophyll related changes and oxidative damage in Chlorella ellipsoides (Chlorophyceae)\",\"authors\":\"Matouke M. Moise\",\"doi\":\"10.21472/bjbs.061412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The increasing production of anthropological wastes containing heavy metals has resulted to their discharge and contamination into freshwater ecosystems. Hence, the effects of heavy metals are of health concern for aquatic biodiversity. This study investigated the short term effects of Pb2+ (0.0, 10, 20, 40, 60, 80 and 100 µg.L-1) on the biomass (cell density, chlorophyll a, b) and antioxidant (catalase (CAT), superoxide dismutase (SOD), guiacol peroxidase (GPx), glutathione reductase (GRx), and malondialdehyde (MDA)). Chlorella ellipsoides (Chlorophyceae) was sensitive to Pb2+, a significant decrease (p < 0.05) of chlorophyll a and b was observed with increasing concentrations of Pb2+. Antioxidant Catalase, SOD, GPx and GRx relatively decreased significantly (p < 0.05) after exposure of microalga to Pb2+. However, MDA increased significantly (p < 0.05) after microalgae was exposed to Pb2+. The finding of this study indicates that exogenous concentrations are harmful for the welfare of C. ellipsoides. This study is important as it demonstrates the potential impact of Pb2+ on microalgae. Field studies in African freshwater biodiversity and monitoring of aquatic ecosystems are recommended to assess the level and impact of Pb2+ in aquatic ecosystems.\\n\",\"PeriodicalId\":9319,\"journal\":{\"name\":\"Brazilian Journal of Biological Sciences\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Biological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21472/bjbs.061412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21472/bjbs.061412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

含有重金属的人类废弃物的生产日益增加,导致其排放和污染淡水生态系统。因此,重金属对水生生物多样性的影响是健康问题。本研究考察了Pb2+(0.0、10、20、40、60、80和100µg.L-1)对生物量(细胞密度、叶绿素a、b)和抗氧化剂(过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、guiacol过氧化物酶(GPx)、谷胱甘肽还原酶(GRx)和丙二醛(MDA))的短期影响。椭圆小球藻(Chlorella ellipsoides)对Pb2+较为敏感,叶绿素a和叶绿素b随Pb2+浓度的升高而显著降低(p < 0.05)。抗氧化过氧化氢酶、SOD、GPx和GRx在Pb2+处理后相对显著降低(p < 0.05)。而Pb2+处理后,MDA显著升高(p < 0.05)。本研究的结果表明,外源浓度对桔黄的福利是有害的。该研究具有重要意义,因为它证明了Pb2+对微藻的潜在影响。建议对非洲淡水生物多样性和水生生态系统监测进行实地研究,以评估水生生态系统中Pb2+的水平和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lead (Pb2+) causes chlorophyll related changes and oxidative damage in Chlorella ellipsoides (Chlorophyceae)
The increasing production of anthropological wastes containing heavy metals has resulted to their discharge and contamination into freshwater ecosystems. Hence, the effects of heavy metals are of health concern for aquatic biodiversity. This study investigated the short term effects of Pb2+ (0.0, 10, 20, 40, 60, 80 and 100 µg.L-1) on the biomass (cell density, chlorophyll a, b) and antioxidant (catalase (CAT), superoxide dismutase (SOD), guiacol peroxidase (GPx), glutathione reductase (GRx), and malondialdehyde (MDA)). Chlorella ellipsoides (Chlorophyceae) was sensitive to Pb2+, a significant decrease (p < 0.05) of chlorophyll a and b was observed with increasing concentrations of Pb2+. Antioxidant Catalase, SOD, GPx and GRx relatively decreased significantly (p < 0.05) after exposure of microalga to Pb2+. However, MDA increased significantly (p < 0.05) after microalgae was exposed to Pb2+. The finding of this study indicates that exogenous concentrations are harmful for the welfare of C. ellipsoides. This study is important as it demonstrates the potential impact of Pb2+ on microalgae. Field studies in African freshwater biodiversity and monitoring of aquatic ecosystems are recommended to assess the level and impact of Pb2+ in aquatic ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信