煤非催化加氢液化的广义动力学模型

A. Ghosh, G. Prasad, J. Agnew, T. Sridhar
{"title":"煤非催化加氢液化的广义动力学模型","authors":"A. Ghosh, G. Prasad, J. Agnew, T. Sridhar","doi":"10.1021/I200033A019","DOIUrl":null,"url":null,"abstract":"A kinetic model, incorporating dehydrogenation of tetralin, for the liquefaction of coals has been developed and tested with data from a variety of low- and medium-rank coals. The model postulates that coal essentially consists of three lumps. Of these, one dissociates almost instantaneously, the second is characterized by slow internal hydrogen shuttling, and only the third lump requires external hydrogen. The reactivity of each lump does not vary between coals; however, different coals are found to contain different fractions of each lump. The rate of reaction of coal is about 3 orders of magnitude faster than the tetralin dehydrogenation reaction. This study clearly shows that it is not only the solvent's capacity to donate hydrogen but also the rate at which hydrogen is donated that is important in coal liquefaction.","PeriodicalId":13537,"journal":{"name":"Industrial & Engineering Chemistry Process Design and Development","volume":"2010 1","pages":"464-471"},"PeriodicalIF":0.0000,"publicationDate":"1986-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized kinetic model for the uncatalyzed hydroliquefaction of coal\",\"authors\":\"A. Ghosh, G. Prasad, J. Agnew, T. Sridhar\",\"doi\":\"10.1021/I200033A019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A kinetic model, incorporating dehydrogenation of tetralin, for the liquefaction of coals has been developed and tested with data from a variety of low- and medium-rank coals. The model postulates that coal essentially consists of three lumps. Of these, one dissociates almost instantaneously, the second is characterized by slow internal hydrogen shuttling, and only the third lump requires external hydrogen. The reactivity of each lump does not vary between coals; however, different coals are found to contain different fractions of each lump. The rate of reaction of coal is about 3 orders of magnitude faster than the tetralin dehydrogenation reaction. This study clearly shows that it is not only the solvent's capacity to donate hydrogen but also the rate at which hydrogen is donated that is important in coal liquefaction.\",\"PeriodicalId\":13537,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Process Design and Development\",\"volume\":\"2010 1\",\"pages\":\"464-471\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Process Design and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/I200033A019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Process Design and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/I200033A019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

建立了煤液化的四氢萘脱氢动力学模型,并用各种中低阶煤的数据进行了试验。该模型假定煤基本上由三大块组成。其中一个几乎是瞬间解离的,第二个的特点是内部氢的缓慢穿梭,只有第三个团块需要外部氢。每块煤的反应性不因煤而异;然而,不同的煤被发现含有不同的块状成分。煤的反应速度比四氢萘脱氢反应快约3个数量级。这项研究清楚地表明,在煤液化中,不仅溶剂的供氢能力很重要,而且供氢的速率也很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized kinetic model for the uncatalyzed hydroliquefaction of coal
A kinetic model, incorporating dehydrogenation of tetralin, for the liquefaction of coals has been developed and tested with data from a variety of low- and medium-rank coals. The model postulates that coal essentially consists of three lumps. Of these, one dissociates almost instantaneously, the second is characterized by slow internal hydrogen shuttling, and only the third lump requires external hydrogen. The reactivity of each lump does not vary between coals; however, different coals are found to contain different fractions of each lump. The rate of reaction of coal is about 3 orders of magnitude faster than the tetralin dehydrogenation reaction. This study clearly shows that it is not only the solvent's capacity to donate hydrogen but also the rate at which hydrogen is donated that is important in coal liquefaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信