带有web抢占的COUNT-DISTINCT查询的在线近似SPARQL查询处理

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Semantic Web Pub Date : 2022-05-26 DOI:10.3233/sw-222842
Julien Aimonier-Davat, H. Skaf-Molli, P. Molli, Arnaud Grall, Thomas Minier
{"title":"带有web抢占的COUNT-DISTINCT查询的在线近似SPARQL查询处理","authors":"Julien Aimonier-Davat, H. Skaf-Molli, P. Molli, Arnaud Grall, Thomas Minier","doi":"10.3233/sw-222842","DOIUrl":null,"url":null,"abstract":"Getting complete results when processing aggregate queries on public SPARQL endpoints is challenging, mainly due to the application of quotas. Although Web preemption supports processing of aggregate queries online, on preemptable SPARQL servers, data transfer is still very large when processing count-distinct aggregate queries. In this paper, it is shown that count-distinct aggregate queries can be approximated with low data transfer by extending the partial aggregation operator with HyperLogLog++ sketches. Experimental results demonstrate that the proposed approach outperforms existing approaches by orders of magnitude in terms of the amount of data transferred.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"98 1","pages":"735-755"},"PeriodicalIF":3.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Online approximative SPARQL query processing for COUNT-DISTINCT queries with web preemption\",\"authors\":\"Julien Aimonier-Davat, H. Skaf-Molli, P. Molli, Arnaud Grall, Thomas Minier\",\"doi\":\"10.3233/sw-222842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Getting complete results when processing aggregate queries on public SPARQL endpoints is challenging, mainly due to the application of quotas. Although Web preemption supports processing of aggregate queries online, on preemptable SPARQL servers, data transfer is still very large when processing count-distinct aggregate queries. In this paper, it is shown that count-distinct aggregate queries can be approximated with low data transfer by extending the partial aggregation operator with HyperLogLog++ sketches. Experimental results demonstrate that the proposed approach outperforms existing approaches by orders of magnitude in terms of the amount of data transferred.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"98 1\",\"pages\":\"735-755\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-222842\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-222842","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

摘要

在公共SPARQL端点上处理聚合查询时获得完整的结果具有挑战性,这主要是由于配额的应用。尽管Web抢占支持在线处理聚合查询,但是在可抢占的SPARQL服务器上,当处理不同计数的聚合查询时,数据传输仍然非常大。在本文中,通过使用hyperloglog++草图扩展部分聚合算子,证明了可以在低数据传输的情况下逼近计数不同的聚合查询。实验结果表明,该方法在传输数据量方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online approximative SPARQL query processing for COUNT-DISTINCT queries with web preemption
Getting complete results when processing aggregate queries on public SPARQL endpoints is challenging, mainly due to the application of quotas. Although Web preemption supports processing of aggregate queries online, on preemptable SPARQL servers, data transfer is still very large when processing count-distinct aggregate queries. In this paper, it is shown that count-distinct aggregate queries can be approximated with low data transfer by extending the partial aggregation operator with HyperLogLog++ sketches. Experimental results demonstrate that the proposed approach outperforms existing approaches by orders of magnitude in terms of the amount of data transferred.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semantic Web
Semantic Web COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍: The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信