薄涂层散射的积分方程域分解方法

R. Zhao, Jun Hu, M. Jiang, Z. Nie
{"title":"薄涂层散射的积分方程域分解方法","authors":"R. Zhao, Jun Hu, M. Jiang, Z. Nie","doi":"10.1109/COMPEM.2015.7052638","DOIUrl":null,"url":null,"abstract":"In this paper, a novel non-conformal non-overlapping integral equation domain decomposition method with impedance boundary condition (IE-DDM-IBC) is presented to simulate the EM scattering from thin coating objects. By using the Robin transmission condition, the original object can be decomposed into several non-overlapping closed sub-domains, and each sub-domain can be meshed independently. It also provides an effective preconditioner to realize fast convergence for thin coating objects with multi-scale property.","PeriodicalId":6530,"journal":{"name":"2015 IEEE International Conference on Computational Electromagnetics","volume":"70 1","pages":"291-293"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integral equation domain decomposition method for scattering from thin coating objects\",\"authors\":\"R. Zhao, Jun Hu, M. Jiang, Z. Nie\",\"doi\":\"10.1109/COMPEM.2015.7052638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel non-conformal non-overlapping integral equation domain decomposition method with impedance boundary condition (IE-DDM-IBC) is presented to simulate the EM scattering from thin coating objects. By using the Robin transmission condition, the original object can be decomposed into several non-overlapping closed sub-domains, and each sub-domain can be meshed independently. It also provides an effective preconditioner to realize fast convergence for thin coating objects with multi-scale property.\",\"PeriodicalId\":6530,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Electromagnetics\",\"volume\":\"70 1\",\"pages\":\"291-293\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2015.7052638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2015.7052638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种具有阻抗边界条件的非保形无重叠积分方程域分解方法(IE-DDM-IBC),用于模拟薄涂层物体的电磁散射。利用Robin传输条件,将原始目标分解为多个不重叠的封闭子域,每个子域可以独立进行网格划分。为实现多尺度薄涂层物体的快速收敛提供了有效的预处理条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral equation domain decomposition method for scattering from thin coating objects
In this paper, a novel non-conformal non-overlapping integral equation domain decomposition method with impedance boundary condition (IE-DDM-IBC) is presented to simulate the EM scattering from thin coating objects. By using the Robin transmission condition, the original object can be decomposed into several non-overlapping closed sub-domains, and each sub-domain can be meshed independently. It also provides an effective preconditioner to realize fast convergence for thin coating objects with multi-scale property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信