基于深度强化学习的路边通信网络调度

Ribal Atallah, C. Assi, Maurice J. Khabbaz
{"title":"基于深度强化学习的路边通信网络调度","authors":"Ribal Atallah, C. Assi, Maurice J. Khabbaz","doi":"10.23919/WIOPT.2017.7959912","DOIUrl":null,"url":null,"abstract":"The proper design of a vehicular network is the key expeditor for establishing an efficient Intelligent Transportation System, which enables diverse applications associated with traffic safety, traffic efficiency, and the entertainment of commuting passengers. In this paper, we address both safety and Quality-of-Service (QoS) concerns in a green Vehicle-to-Infrastructure communication scenario. Using the recent advances in training deep neural networks, we present a deep reinforcement learning model, namely deep Q-network, that learns an energy-efficient scheduling policy from high-dimensional inputs corresponding to the characteristics and requirements of vehicles residing within a RoadSide Unit's (RSU) communication range. The realized policy serves to extend the lifetime of the battery-powered RSU while promoting a safe environment that meets acceptable QoS levels. Our presented deep reinforcement learning model is found to outperform both random and greedy scheduling benchmarks.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Deep reinforcement learning-based scheduling for roadside communication networks\",\"authors\":\"Ribal Atallah, C. Assi, Maurice J. Khabbaz\",\"doi\":\"10.23919/WIOPT.2017.7959912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proper design of a vehicular network is the key expeditor for establishing an efficient Intelligent Transportation System, which enables diverse applications associated with traffic safety, traffic efficiency, and the entertainment of commuting passengers. In this paper, we address both safety and Quality-of-Service (QoS) concerns in a green Vehicle-to-Infrastructure communication scenario. Using the recent advances in training deep neural networks, we present a deep reinforcement learning model, namely deep Q-network, that learns an energy-efficient scheduling policy from high-dimensional inputs corresponding to the characteristics and requirements of vehicles residing within a RoadSide Unit's (RSU) communication range. The realized policy serves to extend the lifetime of the battery-powered RSU while promoting a safe environment that meets acceptable QoS levels. Our presented deep reinforcement learning model is found to outperform both random and greedy scheduling benchmarks.\",\"PeriodicalId\":6630,\"journal\":{\"name\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WIOPT.2017.7959912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

正确设计车辆网络是建立高效的智能交通系统的关键,它可以实现与交通安全、交通效率和通勤乘客娱乐相关的各种应用。在本文中,我们讨论了绿色车辆到基础设施通信场景中的安全性和服务质量(QoS)问题。利用深度神经网络训练的最新进展,我们提出了一个深度强化学习模型,即深度q -网络,该模型从对应于驻留在路边单元(RSU)通信范围内的车辆的特征和要求的高维输入中学习节能调度策略。实现的策略用于延长电池供电的RSU的使用寿命,同时促进满足可接受的QoS级别的安全环境。我们提出的深度强化学习模型被发现优于随机和贪婪调度基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep reinforcement learning-based scheduling for roadside communication networks
The proper design of a vehicular network is the key expeditor for establishing an efficient Intelligent Transportation System, which enables diverse applications associated with traffic safety, traffic efficiency, and the entertainment of commuting passengers. In this paper, we address both safety and Quality-of-Service (QoS) concerns in a green Vehicle-to-Infrastructure communication scenario. Using the recent advances in training deep neural networks, we present a deep reinforcement learning model, namely deep Q-network, that learns an energy-efficient scheduling policy from high-dimensional inputs corresponding to the characteristics and requirements of vehicles residing within a RoadSide Unit's (RSU) communication range. The realized policy serves to extend the lifetime of the battery-powered RSU while promoting a safe environment that meets acceptable QoS levels. Our presented deep reinforcement learning model is found to outperform both random and greedy scheduling benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信