神经网络宽度和深度的拟等价

Fenglei Fan, Rongjie Lai, Ge Wang
{"title":"神经网络宽度和深度的拟等价","authors":"Fenglei Fan, Rongjie Lai, Ge Wang","doi":"10.21203/rs.3.rs-92324/v1","DOIUrl":null,"url":null,"abstract":"\n While classic studies proved that wide networks allow universal approximation, recent research and successes\nof deep learning demonstrate the power of the network depth. Based on a symmetric consideration,\nwe investigate if the design of artificial neural networks should have a directional preference, and what the\nmechanism of interaction is between the width and depth of a network. We address this fundamental question\nby establishing a quasi-equivalence between the width and depth of ReLU networks. Specifically, we formulate a\ntransformation from an arbitrary ReLU network to a wide network and a deep network for either regression\nor classification so that an essentially same capability of the original network can be implemented. That is, a\ndeep regression/classification ReLU network has a wide equivalent, and vice versa, subject to an arbitrarily small\nerror. Interestingly, the quasi-equivalence between wide and deep classification ReLU networks is a data-driven\nversion of the DeMorgan law.","PeriodicalId":8468,"journal":{"name":"arXiv: Learning","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Quasi-Equivalence of Width and Depth of Neural Networks\",\"authors\":\"Fenglei Fan, Rongjie Lai, Ge Wang\",\"doi\":\"10.21203/rs.3.rs-92324/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n While classic studies proved that wide networks allow universal approximation, recent research and successes\\nof deep learning demonstrate the power of the network depth. Based on a symmetric consideration,\\nwe investigate if the design of artificial neural networks should have a directional preference, and what the\\nmechanism of interaction is between the width and depth of a network. We address this fundamental question\\nby establishing a quasi-equivalence between the width and depth of ReLU networks. Specifically, we formulate a\\ntransformation from an arbitrary ReLU network to a wide network and a deep network for either regression\\nor classification so that an essentially same capability of the original network can be implemented. That is, a\\ndeep regression/classification ReLU network has a wide equivalent, and vice versa, subject to an arbitrarily small\\nerror. Interestingly, the quasi-equivalence between wide and deep classification ReLU networks is a data-driven\\nversion of the DeMorgan law.\",\"PeriodicalId\":8468,\"journal\":{\"name\":\"arXiv: Learning\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-92324/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-92324/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

虽然经典研究证明了宽网络允许通用近似,但最近的研究和深度学习的成功证明了网络深度的力量。基于对称考虑,我们研究了人工神经网络的设计是否应该具有方向偏好,以及网络宽度和深度之间的相互作用机制。我们通过建立ReLU网络的宽度和深度之间的拟等价来解决这个基本问题。具体来说,我们制定了从任意ReLU网络到广泛网络和深度网络的转换,用于回归或分类,从而可以实现与原始网络基本相同的功能。也就是说,深度回归/分类ReLU网络具有广泛的等效性,反之亦然,受到任意小误差的影响。有趣的是,宽分类和深分类ReLU网络之间的准等价是民主党法律的数据驱动版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Equivalence of Width and Depth of Neural Networks
While classic studies proved that wide networks allow universal approximation, recent research and successes of deep learning demonstrate the power of the network depth. Based on a symmetric consideration, we investigate if the design of artificial neural networks should have a directional preference, and what the mechanism of interaction is between the width and depth of a network. We address this fundamental question by establishing a quasi-equivalence between the width and depth of ReLU networks. Specifically, we formulate a transformation from an arbitrary ReLU network to a wide network and a deep network for either regression or classification so that an essentially same capability of the original network can be implemented. That is, a deep regression/classification ReLU network has a wide equivalent, and vice versa, subject to an arbitrarily small error. Interestingly, the quasi-equivalence between wide and deep classification ReLU networks is a data-driven version of the DeMorgan law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信