求解非线性Volterra-Fredholm积分微分方程的一种新的数值方法

IF 1.6 3区 数学 Q1 MATHEMATICS
Jinjiao Hou, J. Niu, Welreach Ngolo
{"title":"求解非线性Volterra-Fredholm积分微分方程的一种新的数值方法","authors":"Jinjiao Hou, J. Niu, Welreach Ngolo","doi":"10.3846/mma.2021.12923","DOIUrl":null,"url":null,"abstract":"In this paper, a new method combining the simplified reproducing kernel method (SRKM) and the homotopy perturbation method (HPM) to solve the nonlinear Volterra-Fredholm integro-differential equations (V-FIDE) is proposed. Firstly the HPM can convert nonlinear problems into linear problems. After that we use the SRKM to solve the linear problems. Secondly, we prove the uniform convergence of the approximate solution. Finally, some numerical calculations are proposed to verify the effectiveness of the approach.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"35 1","pages":"469-478"},"PeriodicalIF":1.6000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New numerical method to solve nonlinear Volterra-Fredholm integro-differential equations\",\"authors\":\"Jinjiao Hou, J. Niu, Welreach Ngolo\",\"doi\":\"10.3846/mma.2021.12923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method combining the simplified reproducing kernel method (SRKM) and the homotopy perturbation method (HPM) to solve the nonlinear Volterra-Fredholm integro-differential equations (V-FIDE) is proposed. Firstly the HPM can convert nonlinear problems into linear problems. After that we use the SRKM to solve the linear problems. Secondly, we prove the uniform convergence of the approximate solution. Finally, some numerical calculations are proposed to verify the effectiveness of the approach.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"35 1\",\"pages\":\"469-478\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2021.12923\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2021.12923","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种结合简化再现核法(SRKM)和同伦摄动法(HPM)求解非线性Volterra-Fredholm积分微分方程(V-FIDE)的新方法。首先,HPM可以将非线性问题转化为线性问题。之后我们使用SRKM来解决线性问题。其次,证明了近似解的一致收敛性。最后,通过数值计算验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New numerical method to solve nonlinear Volterra-Fredholm integro-differential equations
In this paper, a new method combining the simplified reproducing kernel method (SRKM) and the homotopy perturbation method (HPM) to solve the nonlinear Volterra-Fredholm integro-differential equations (V-FIDE) is proposed. Firstly the HPM can convert nonlinear problems into linear problems. After that we use the SRKM to solve the linear problems. Secondly, we prove the uniform convergence of the approximate solution. Finally, some numerical calculations are proposed to verify the effectiveness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信