氢基础设施用聚合物氢输运特性的温度依赖性研究

IF 1.2 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
J. Jang, Chunjoong Kim, Nak-Kwan Chung
{"title":"氢基础设施用聚合物氢输运特性的温度依赖性研究","authors":"J. Jang, Chunjoong Kim, Nak-Kwan Chung","doi":"10.5757/asct.2021.30.6.163","DOIUrl":null,"url":null,"abstract":"Polymeric materials used in hydrogen infrastructure degrade with temperature changes, thereby increasing the risk of hydrogen leakage. Therefore, it is essential to evaluate the hydrogen permeation characteristics at varying temperatures, particularly at low temperatures, for the safe use of hydrogen energy. This study aimed to measure hydrogen permeability at a temperature range of 243–313 K for exploring the hydrogen permeation characteristics according to the temperature of ethylene-propylene diene monomer (EPDM), fluorine-rubber (FKM), and nitrilebutadiene rubber (NBR) for hydrogen infrastructure. Results show that permeability and diffusivity rapidly decreased as the temperature decreased; however, there was no significant change in solubility with the variation in temperature. Activation energies of permeability, diffusivity, and solubility were calculated from the measurement results, among which the activation energy for permeability exhibited the largest value in the order of FKM, NBR, and EPDM.","PeriodicalId":8223,"journal":{"name":"Applied Science and Convergence Technology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Temperature-Dependence Study on the Hydrogen Transport Properties of Polymers Used for Hydrogen Infrastructure\",\"authors\":\"J. Jang, Chunjoong Kim, Nak-Kwan Chung\",\"doi\":\"10.5757/asct.2021.30.6.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymeric materials used in hydrogen infrastructure degrade with temperature changes, thereby increasing the risk of hydrogen leakage. Therefore, it is essential to evaluate the hydrogen permeation characteristics at varying temperatures, particularly at low temperatures, for the safe use of hydrogen energy. This study aimed to measure hydrogen permeability at a temperature range of 243–313 K for exploring the hydrogen permeation characteristics according to the temperature of ethylene-propylene diene monomer (EPDM), fluorine-rubber (FKM), and nitrilebutadiene rubber (NBR) for hydrogen infrastructure. Results show that permeability and diffusivity rapidly decreased as the temperature decreased; however, there was no significant change in solubility with the variation in temperature. Activation energies of permeability, diffusivity, and solubility were calculated from the measurement results, among which the activation energy for permeability exhibited the largest value in the order of FKM, NBR, and EPDM.\",\"PeriodicalId\":8223,\"journal\":{\"name\":\"Applied Science and Convergence Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Convergence Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5757/asct.2021.30.6.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Convergence Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5757/asct.2021.30.6.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

用于氢气基础设施的聚合物材料随着温度的变化而降解,从而增加了氢气泄漏的风险。因此,评估不同温度下,特别是低温下氢气的渗透特性,对于氢能的安全利用至关重要。本研究旨在测量243-313 K温度范围内的氢气渗透率,以探索氢基础设施用三元乙丙橡胶(EPDM)、氟橡胶(FKM)和丁腈橡胶(NBR)的氢气渗透特性。结果表明:随着温度的降低,渗透率和扩散率迅速降低;而溶解度随温度变化无明显变化。根据测量结果计算渗透率活化能、扩散性活化能和溶解度活化能,其中渗透率活化能最大,依次为FKM、NBR、EPDM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature-Dependence Study on the Hydrogen Transport Properties of Polymers Used for Hydrogen Infrastructure
Polymeric materials used in hydrogen infrastructure degrade with temperature changes, thereby increasing the risk of hydrogen leakage. Therefore, it is essential to evaluate the hydrogen permeation characteristics at varying temperatures, particularly at low temperatures, for the safe use of hydrogen energy. This study aimed to measure hydrogen permeability at a temperature range of 243–313 K for exploring the hydrogen permeation characteristics according to the temperature of ethylene-propylene diene monomer (EPDM), fluorine-rubber (FKM), and nitrilebutadiene rubber (NBR) for hydrogen infrastructure. Results show that permeability and diffusivity rapidly decreased as the temperature decreased; however, there was no significant change in solubility with the variation in temperature. Activation energies of permeability, diffusivity, and solubility were calculated from the measurement results, among which the activation energy for permeability exhibited the largest value in the order of FKM, NBR, and EPDM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信