{"title":"具有饱和间隙的偏磁电感器的设计、分析与仿真","authors":"A. Aguilar, S. Munk‐Nielsen","doi":"10.1109/EPE.2014.6910896","DOIUrl":null,"url":null,"abstract":"Permanent magnet biasing, is a known technique for increasing the energy storage capability of inductors operating in DC applications. The opposing flux introduced by a permanent magnet will extend the saturation flux limit of a given magnetic material. When full biasing of the core is achieved, the effective saturation current limit of a given inductor is doubled. This results in a smaller requirement in number of turns and area cross-section, allowing for smaller and/or more efficient inductors. By adding some switching elements, the benefits of biased inductors can also be used in AC applications. This paper presents a review of the scientific literature on biased hybrid inductors and the evolution of the used magnets and cores configurations. A recently developed biasing configuration, the saturation-gap, will also be analyzed and the design parameter will be identified using finite element software. The simulation results will be compared with empirical laboratory measurements on physical units.","PeriodicalId":6508,"journal":{"name":"2014 16th European Conference on Power Electronics and Applications","volume":"2009 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design, analysis and simulation of magnetic biased inductors with saturation-gap\",\"authors\":\"A. Aguilar, S. Munk‐Nielsen\",\"doi\":\"10.1109/EPE.2014.6910896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permanent magnet biasing, is a known technique for increasing the energy storage capability of inductors operating in DC applications. The opposing flux introduced by a permanent magnet will extend the saturation flux limit of a given magnetic material. When full biasing of the core is achieved, the effective saturation current limit of a given inductor is doubled. This results in a smaller requirement in number of turns and area cross-section, allowing for smaller and/or more efficient inductors. By adding some switching elements, the benefits of biased inductors can also be used in AC applications. This paper presents a review of the scientific literature on biased hybrid inductors and the evolution of the used magnets and cores configurations. A recently developed biasing configuration, the saturation-gap, will also be analyzed and the design parameter will be identified using finite element software. The simulation results will be compared with empirical laboratory measurements on physical units.\",\"PeriodicalId\":6508,\"journal\":{\"name\":\"2014 16th European Conference on Power Electronics and Applications\",\"volume\":\"2009 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th European Conference on Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPE.2014.6910896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th European Conference on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2014.6910896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, analysis and simulation of magnetic biased inductors with saturation-gap
Permanent magnet biasing, is a known technique for increasing the energy storage capability of inductors operating in DC applications. The opposing flux introduced by a permanent magnet will extend the saturation flux limit of a given magnetic material. When full biasing of the core is achieved, the effective saturation current limit of a given inductor is doubled. This results in a smaller requirement in number of turns and area cross-section, allowing for smaller and/or more efficient inductors. By adding some switching elements, the benefits of biased inductors can also be used in AC applications. This paper presents a review of the scientific literature on biased hybrid inductors and the evolution of the used magnets and cores configurations. A recently developed biasing configuration, the saturation-gap, will also be analyzed and the design parameter will be identified using finite element software. The simulation results will be compared with empirical laboratory measurements on physical units.