基于环面自同构的RSA加密算法

L. Kocarev, Marjan Sterjev, P. Amato
{"title":"基于环面自同构的RSA加密算法","authors":"L. Kocarev, Marjan Sterjev, P. Amato","doi":"10.1109/ISCAS.2004.1329069","DOIUrl":null,"url":null,"abstract":"We propose a public-key encryption algorithm based on torus automorphisms, which is secure, practical, and can be used for both encryption and digital signature. Software implementation and properties of the algorithm are discussed in detail. We show that our algorithm is as secure as RSA algorithm. In this paper we have generalized RSA algorithm replacing powers with matrix powers, choosing the matrix to be a matrix which defines a two-torus automorphisms, an example of strongly chaotic system.","PeriodicalId":6445,"journal":{"name":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","volume":"50 1","pages":"IV-577"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"RSA encryption algorithm based on torus automorphisms\",\"authors\":\"L. Kocarev, Marjan Sterjev, P. Amato\",\"doi\":\"10.1109/ISCAS.2004.1329069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a public-key encryption algorithm based on torus automorphisms, which is secure, practical, and can be used for both encryption and digital signature. Software implementation and properties of the algorithm are discussed in detail. We show that our algorithm is as secure as RSA algorithm. In this paper we have generalized RSA algorithm replacing powers with matrix powers, choosing the matrix to be a matrix which defines a two-torus automorphisms, an example of strongly chaotic system.\",\"PeriodicalId\":6445,\"journal\":{\"name\":\"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)\",\"volume\":\"50 1\",\"pages\":\"IV-577\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2004.1329069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2004.1329069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种基于环面自同构的公钥加密算法,该算法安全实用,可用于加密和数字签名。详细讨论了该算法的软件实现和特性。我们证明了我们的算法与RSA算法一样安全。本文用矩阵幂代替幂的广义RSA算法,选取矩阵为定义两环自同构的矩阵,作为强混沌系统的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RSA encryption algorithm based on torus automorphisms
We propose a public-key encryption algorithm based on torus automorphisms, which is secure, practical, and can be used for both encryption and digital signature. Software implementation and properties of the algorithm are discussed in detail. We show that our algorithm is as secure as RSA algorithm. In this paper we have generalized RSA algorithm replacing powers with matrix powers, choosing the matrix to be a matrix which defines a two-torus automorphisms, an example of strongly chaotic system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信