深度可解释关系强化学习:一种神经符号方法

Rishi Hazra, L. D. Raedt
{"title":"深度可解释关系强化学习:一种神经符号方法","authors":"Rishi Hazra, L. D. Raedt","doi":"10.48550/arXiv.2304.08349","DOIUrl":null,"url":null,"abstract":"Despite numerous successes in Deep Reinforcement Learning (DRL), the learned policies are not interpretable. Moreover, since DRL does not exploit symbolic relational representations, it has difficulties in coping with structural changes in its environment (such as increasing the number of objects). Relational Reinforcement Learning, on the other hand, inherits the relational representations from symbolic planning to learn reusable policies. However, it has so far been unable to scale up and exploit the power of deep neural networks. We propose Deep Explainable Relational Reinforcement Learning (DERRL), a framework that exploits the best of both -- neural and symbolic worlds. By resorting to a neuro-symbolic approach, DERRL combines relational representations and constraints from symbolic planning with deep learning to extract interpretable policies. These policies are in the form of logical rules that explain how each decision (or action) is arrived at. Through several experiments, in setups like the Countdown Game, Blocks World, Gridworld, and Traffic, we show that the policies learned by DERRL can be applied to different configurations and contexts, hence generalizing to environmental modifications.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Explainable Relational Reinforcement Learning: A Neuro-Symbolic Approach\",\"authors\":\"Rishi Hazra, L. D. Raedt\",\"doi\":\"10.48550/arXiv.2304.08349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite numerous successes in Deep Reinforcement Learning (DRL), the learned policies are not interpretable. Moreover, since DRL does not exploit symbolic relational representations, it has difficulties in coping with structural changes in its environment (such as increasing the number of objects). Relational Reinforcement Learning, on the other hand, inherits the relational representations from symbolic planning to learn reusable policies. However, it has so far been unable to scale up and exploit the power of deep neural networks. We propose Deep Explainable Relational Reinforcement Learning (DERRL), a framework that exploits the best of both -- neural and symbolic worlds. By resorting to a neuro-symbolic approach, DERRL combines relational representations and constraints from symbolic planning with deep learning to extract interpretable policies. These policies are in the form of logical rules that explain how each decision (or action) is arrived at. Through several experiments, in setups like the Countdown Game, Blocks World, Gridworld, and Traffic, we show that the policies learned by DERRL can be applied to different configurations and contexts, hence generalizing to environmental modifications.\",\"PeriodicalId\":74091,\"journal\":{\"name\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.08349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.08349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管深度强化学习(DRL)取得了许多成功,但学习到的策略是不可解释的。此外,由于DRL不利用符号关系表示,它在处理其环境中的结构变化(例如增加对象数量)方面存在困难。另一方面,关系强化学习从符号规划中继承关系表示来学习可重用策略。然而,到目前为止,它还无法扩大和利用深度神经网络的力量。我们提出深度可解释关系强化学习(DERRL),这是一个利用神经和符号世界最好的框架。通过采用神经符号方法,DERRL将符号规划中的关系表示和约束与深度学习相结合,以提取可解释的策略。这些策略以逻辑规则的形式出现,解释每个决策(或行动)是如何达成的。通过几个实验,比如倒计时游戏,方块世界,网格世界和交通,我们表明DERRL学习的策略可以应用于不同的配置和上下文,从而推广到环境修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Explainable Relational Reinforcement Learning: A Neuro-Symbolic Approach
Despite numerous successes in Deep Reinforcement Learning (DRL), the learned policies are not interpretable. Moreover, since DRL does not exploit symbolic relational representations, it has difficulties in coping with structural changes in its environment (such as increasing the number of objects). Relational Reinforcement Learning, on the other hand, inherits the relational representations from symbolic planning to learn reusable policies. However, it has so far been unable to scale up and exploit the power of deep neural networks. We propose Deep Explainable Relational Reinforcement Learning (DERRL), a framework that exploits the best of both -- neural and symbolic worlds. By resorting to a neuro-symbolic approach, DERRL combines relational representations and constraints from symbolic planning with deep learning to extract interpretable policies. These policies are in the form of logical rules that explain how each decision (or action) is arrived at. Through several experiments, in setups like the Countdown Game, Blocks World, Gridworld, and Traffic, we show that the policies learned by DERRL can be applied to different configurations and contexts, hence generalizing to environmental modifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信