多媒体数据汇总工具

Swarna Kadagadkai, Malini Patil, Ashwini Nagathan, Abhinand Harish, Anoop MV
{"title":"多媒体数据汇总工具","authors":"Swarna Kadagadkai,&nbsp;Malini Patil,&nbsp;Ashwini Nagathan,&nbsp;Abhinand Harish,&nbsp;Anoop MV","doi":"10.1016/j.gltp.2022.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Text summarization is an important Natural Language Processing problem. Manual text summarization is a laborious and time-consuming task. Owing to the advancements in the field of Natural Language Processing, this task can be effectively moved from manual to automated text summarization. This paper proposes a model named Term Frequency-Inverse Document Frequency (TF-IDF) Summarization Tool which implements a text analytics approach called TF-IDF to generate a meaningful summary. TF-IDF is used to identify the topic or context of the text statistically. As data today is mostly unstructured in nature, this paper aims to explore a combination of NLP techniques such as Speech Recognition and Optical Character Recognition to summarize multimedia data as well. The TF-IDF Summarization Tool is seen to produce summaries with Jaccard's Similarity value of 67% and Rogue-1 of 64.9%, Rogue-2 of 48.2%, and Rogue-L of 56.4% based on a self-developed dataset.</p></div>","PeriodicalId":100588,"journal":{"name":"Global Transitions Proceedings","volume":"3 1","pages":"Pages 2-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666285X22000371/pdfft?md5=698ed5319affd6ce36a31758ea1ef0fb&pid=1-s2.0-S2666285X22000371-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Summarization tool for multimedia data\",\"authors\":\"Swarna Kadagadkai,&nbsp;Malini Patil,&nbsp;Ashwini Nagathan,&nbsp;Abhinand Harish,&nbsp;Anoop MV\",\"doi\":\"10.1016/j.gltp.2022.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Text summarization is an important Natural Language Processing problem. Manual text summarization is a laborious and time-consuming task. Owing to the advancements in the field of Natural Language Processing, this task can be effectively moved from manual to automated text summarization. This paper proposes a model named Term Frequency-Inverse Document Frequency (TF-IDF) Summarization Tool which implements a text analytics approach called TF-IDF to generate a meaningful summary. TF-IDF is used to identify the topic or context of the text statistically. As data today is mostly unstructured in nature, this paper aims to explore a combination of NLP techniques such as Speech Recognition and Optical Character Recognition to summarize multimedia data as well. The TF-IDF Summarization Tool is seen to produce summaries with Jaccard's Similarity value of 67% and Rogue-1 of 64.9%, Rogue-2 of 48.2%, and Rogue-L of 56.4% based on a self-developed dataset.</p></div>\",\"PeriodicalId\":100588,\"journal\":{\"name\":\"Global Transitions Proceedings\",\"volume\":\"3 1\",\"pages\":\"Pages 2-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666285X22000371/pdfft?md5=698ed5319affd6ce36a31758ea1ef0fb&pid=1-s2.0-S2666285X22000371-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Transitions Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666285X22000371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666285X22000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

文本摘要是一个重要的自然语言处理问题。手工文本摘要是一项费时费力的工作。由于自然语言处理领域的进步,这项任务可以有效地从人工文本摘要转移到自动文本摘要。本文提出了一个术语频率-逆文档频率(TF-IDF)摘要工具模型,该模型实现了TF-IDF文本分析方法来生成有意义的摘要。TF-IDF用于统计识别文本的主题或上下文。由于今天的数据本质上大多是非结构化的,因此本文旨在探索语音识别和光学字符识别等自然语言处理技术的结合,以总结多媒体数据。TF-IDF摘要工具可以根据自己开发的数据集生成Jaccard的相似值为67%,Rogue-1的相似值为64.9%,Rogue-2的相似值为48.2%,Rogue-L的相似值为56.4%的摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Summarization tool for multimedia data

Text summarization is an important Natural Language Processing problem. Manual text summarization is a laborious and time-consuming task. Owing to the advancements in the field of Natural Language Processing, this task can be effectively moved from manual to automated text summarization. This paper proposes a model named Term Frequency-Inverse Document Frequency (TF-IDF) Summarization Tool which implements a text analytics approach called TF-IDF to generate a meaningful summary. TF-IDF is used to identify the topic or context of the text statistically. As data today is mostly unstructured in nature, this paper aims to explore a combination of NLP techniques such as Speech Recognition and Optical Character Recognition to summarize multimedia data as well. The TF-IDF Summarization Tool is seen to produce summaries with Jaccard's Similarity value of 67% and Rogue-1 of 64.9%, Rogue-2 of 48.2%, and Rogue-L of 56.4% based on a self-developed dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信