UML图精化(关注类和用例图)

David Faitelson, S. Tyszberowicz
{"title":"UML图精化(关注类和用例图)","authors":"David Faitelson, S. Tyszberowicz","doi":"10.1109/ICSE.2017.73","DOIUrl":null,"url":null,"abstract":"Large and complicated UML models are not useful, because they are difficult to understand. This problem can be solved by using several diagrams of the same system at different levels of abstraction. Unfortunately, UML does not define an explicit set of rules for ensuring that diagrams at different levels of abstraction are consistent. We define such a set of rules, that we call diagram refinement. Diagram refinement is intuitive, and applicable to several kinds of UML diagrams (mostly to structural diagrams but also to use case diagrams), yet it rests on a solid mathematical basis—the theory of graph homomorphisms. We illustrate its usefulness with a series of examples.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"161 1","pages":"735-745"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"UML Diagram Refinement (Focusing on Class-and Use Case Diagrams)\",\"authors\":\"David Faitelson, S. Tyszberowicz\",\"doi\":\"10.1109/ICSE.2017.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large and complicated UML models are not useful, because they are difficult to understand. This problem can be solved by using several diagrams of the same system at different levels of abstraction. Unfortunately, UML does not define an explicit set of rules for ensuring that diagrams at different levels of abstraction are consistent. We define such a set of rules, that we call diagram refinement. Diagram refinement is intuitive, and applicable to several kinds of UML diagrams (mostly to structural diagrams but also to use case diagrams), yet it rests on a solid mathematical basis—the theory of graph homomorphisms. We illustrate its usefulness with a series of examples.\",\"PeriodicalId\":6505,\"journal\":{\"name\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"volume\":\"161 1\",\"pages\":\"735-745\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2017.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

大型和复杂的UML模型是没有用的,因为它们很难理解。这个问题可以通过在不同的抽象层次上使用同一系统的几个图来解决。不幸的是,UML没有定义一套明确的规则来确保不同抽象层次上的图是一致的。我们定义了这样一组规则,我们称之为图的细化。图的细化是直观的,并且适用于几种UML图(主要是结构图,但也适用于用例图),但是它依赖于一个坚实的数学基础——图同态理论。我们用一系列的例子来说明它的用处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UML Diagram Refinement (Focusing on Class-and Use Case Diagrams)
Large and complicated UML models are not useful, because they are difficult to understand. This problem can be solved by using several diagrams of the same system at different levels of abstraction. Unfortunately, UML does not define an explicit set of rules for ensuring that diagrams at different levels of abstraction are consistent. We define such a set of rules, that we call diagram refinement. Diagram refinement is intuitive, and applicable to several kinds of UML diagrams (mostly to structural diagrams but also to use case diagrams), yet it rests on a solid mathematical basis—the theory of graph homomorphisms. We illustrate its usefulness with a series of examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信