结合达西阻力和电动力学的威廉姆森流体流动分析:分析和数值结果

S. Noreen, Ali J. Chamkha, Aqsa Jahan
{"title":"结合达西阻力和电动力学的威廉姆森流体流动分析:分析和数值结果","authors":"S. Noreen, Ali J. Chamkha, Aqsa Jahan","doi":"10.1515/zna-2023-0052","DOIUrl":null,"url":null,"abstract":"Abstract This article discusses a mathematical model for the electrokinetic and Darcy’s resistance of Williamson fluid in an electroosmotic pumping environment. The zeta potential at walls aids in peristaltic movement, and porous dissipation is incorporated into this modulation by the Williamson fluid’s material parameters. Through the use of Debye-Huckel approximations, long wavelengths, and low Reynolds numbers, the model equations are simplified. Mathematica software is used to produce analytical and numerical results, and plots and analyses are done using the included parameters on physical quantities of interest. This study has various practical applications, such as modifying belt resistance in laboratory drainage testing and improving pipeline design. It could also potentially aid in the development of blood filtration and purification techniques and optimize drug delivery systems that utilize fluids. It is observed that the modified Darcy’s law is more accurate for porosity effects in electroosmotic peristaltic channels and results in higher shear stress at the channel wall compared to Darcy’s law.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"01 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Williamson fluid flow incorporating Darcy’s resistance and electro kinetics: analytical and numerical results\",\"authors\":\"S. Noreen, Ali J. Chamkha, Aqsa Jahan\",\"doi\":\"10.1515/zna-2023-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article discusses a mathematical model for the electrokinetic and Darcy’s resistance of Williamson fluid in an electroosmotic pumping environment. The zeta potential at walls aids in peristaltic movement, and porous dissipation is incorporated into this modulation by the Williamson fluid’s material parameters. Through the use of Debye-Huckel approximations, long wavelengths, and low Reynolds numbers, the model equations are simplified. Mathematica software is used to produce analytical and numerical results, and plots and analyses are done using the included parameters on physical quantities of interest. This study has various practical applications, such as modifying belt resistance in laboratory drainage testing and improving pipeline design. It could also potentially aid in the development of blood filtration and purification techniques and optimize drug delivery systems that utilize fluids. It is observed that the modified Darcy’s law is more accurate for porosity effects in electroosmotic peristaltic channels and results in higher shear stress at the channel wall compared to Darcy’s law.\",\"PeriodicalId\":23871,\"journal\":{\"name\":\"Zeitschrift für Naturforschung A\",\"volume\":\"01 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2023-0052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文讨论了电渗泵环境下威廉姆森流体的电动力学和达西阻力的数学模型。壁上的zeta电位有助于蠕动运动,并且通过Williamson流体的材料参数将多孔耗散纳入这种调制。通过使用Debye-Huckel近似、长波长和低雷诺数,简化了模型方程。使用Mathematica软件生成分析和数值结果,并使用所包含的物理量参数进行绘图和分析。该研究在改进实验室排水试验中的带阻、改进管道设计等方面具有多种实际应用价值。它还可能有助于血液过滤和净化技术的发展,并优化利用液体的药物输送系统。结果表明,修正后的达西定律更准确地描述了电渗透蠕动通道的孔隙效应,并且与达西定律相比,修正后的达西定律在通道壁上产生了更大的剪切应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Williamson fluid flow incorporating Darcy’s resistance and electro kinetics: analytical and numerical results
Abstract This article discusses a mathematical model for the electrokinetic and Darcy’s resistance of Williamson fluid in an electroosmotic pumping environment. The zeta potential at walls aids in peristaltic movement, and porous dissipation is incorporated into this modulation by the Williamson fluid’s material parameters. Through the use of Debye-Huckel approximations, long wavelengths, and low Reynolds numbers, the model equations are simplified. Mathematica software is used to produce analytical and numerical results, and plots and analyses are done using the included parameters on physical quantities of interest. This study has various practical applications, such as modifying belt resistance in laboratory drainage testing and improving pipeline design. It could also potentially aid in the development of blood filtration and purification techniques and optimize drug delivery systems that utilize fluids. It is observed that the modified Darcy’s law is more accurate for porosity effects in electroosmotic peristaltic channels and results in higher shear stress at the channel wall compared to Darcy’s law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信