求解变阶分数阶积分微分代数方程的人工神经网络技术

Ahmed N. Talib, Osama H. Mohammed
{"title":"求解变阶分数阶积分微分代数方程的人工神经网络技术","authors":"Ahmed N. Talib, Osama H. Mohammed","doi":"10.22401/anjs.25.3.05","DOIUrl":null,"url":null,"abstract":"In this paper, we will use an artificial neural network (ANN) to solve the variable order fractional integro-differential algebraic equations (VFIDAEs), which is a three-layer feed-forward neural architecture that is formed and trained using a back propagation unsupervised learning algorithm based on the gradient descent rule for minimizing the error function and parameter modification (weights and biases).When we combine the initial conditions with the ANN output, we get a good approximation of the VFIDAE solution. Finally, the analysis is complemented by two numerical examples that demonstrate the method capability. The collected results show that the suggested strategy is quite successful, resulting in superior approximations in these cases.","PeriodicalId":7494,"journal":{"name":"Al-Nahrain Journal of Science","volume":"219 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network Technique for Solving Variable Order Fractional Integro-Differential Algebraic Equations\",\"authors\":\"Ahmed N. Talib, Osama H. Mohammed\",\"doi\":\"10.22401/anjs.25.3.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will use an artificial neural network (ANN) to solve the variable order fractional integro-differential algebraic equations (VFIDAEs), which is a three-layer feed-forward neural architecture that is formed and trained using a back propagation unsupervised learning algorithm based on the gradient descent rule for minimizing the error function and parameter modification (weights and biases).When we combine the initial conditions with the ANN output, we get a good approximation of the VFIDAE solution. Finally, the analysis is complemented by two numerical examples that demonstrate the method capability. The collected results show that the suggested strategy is quite successful, resulting in superior approximations in these cases.\",\"PeriodicalId\":7494,\"journal\":{\"name\":\"Al-Nahrain Journal of Science\",\"volume\":\"219 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Nahrain Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22401/anjs.25.3.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22401/anjs.25.3.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将使用人工神经网络(ANN)来求解变阶分数阶积分微分代数方程(vfidae),这是一个三层前馈神经结构,使用基于梯度下降规则的反向传播无监督学习算法来形成和训练,以最小化误差函数和参数修改(权重和偏差)。当我们将初始条件与人工神经网络输出相结合时,我们得到了一个很好的VFIDAE近似解。最后,通过两个数值算例验证了该方法的有效性。收集的结果表明,所建议的策略是相当成功的,在这些情况下产生了优越的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Neural Network Technique for Solving Variable Order Fractional Integro-Differential Algebraic Equations
In this paper, we will use an artificial neural network (ANN) to solve the variable order fractional integro-differential algebraic equations (VFIDAEs), which is a three-layer feed-forward neural architecture that is formed and trained using a back propagation unsupervised learning algorithm based on the gradient descent rule for minimizing the error function and parameter modification (weights and biases).When we combine the initial conditions with the ANN output, we get a good approximation of the VFIDAE solution. Finally, the analysis is complemented by two numerical examples that demonstrate the method capability. The collected results show that the suggested strategy is quite successful, resulting in superior approximations in these cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信