二维格上热核的渐近性

Asymptot. Anal. Pub Date : 2018-09-13 DOI:10.3233/ASY-181498
P. Gurevich
{"title":"二维格上热核的渐近性","authors":"P. Gurevich","doi":"10.3233/ASY-181498","DOIUrl":null,"url":null,"abstract":"We obtain asymptotic expansions of the spatially discrete 2D heat kernels, or Green's functions on lattices, with respect to powers of time variable up to an arbitrary order and estimate the remainders uniformly on the whole lattice. Unlike in the 1D case, the asymptotics contains a time independent term. The derivation of its spatial asymptotics is the technical core of the paper. Besides numerical applications, the obtained results play a crucial role in the analysis of spatio-temporal patterns for reaction-diffusion equations on lattices, in particular rattling patterns for hysteretic diffusion systems.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"4 1","pages":"107-124"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of the heat kernels on 2D lattices\",\"authors\":\"P. Gurevich\",\"doi\":\"10.3233/ASY-181498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain asymptotic expansions of the spatially discrete 2D heat kernels, or Green's functions on lattices, with respect to powers of time variable up to an arbitrary order and estimate the remainders uniformly on the whole lattice. Unlike in the 1D case, the asymptotics contains a time independent term. The derivation of its spatial asymptotics is the technical core of the paper. Besides numerical applications, the obtained results play a crucial role in the analysis of spatio-temporal patterns for reaction-diffusion equations on lattices, in particular rattling patterns for hysteretic diffusion systems.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"4 1\",\"pages\":\"107-124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了空间离散二维热核或格上格林函数对时间变量幂的渐近展开式,展开式可达任意阶,并在整个格上统一估计余数。与一维情况不同,渐近包含一个与时间无关的项。其空间渐近性的推导是本文的技术核心。除数值应用外,所得结果对分析格上反应扩散方程的时空模式,特别是滞回扩散系统的咔嗒模式具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics of the heat kernels on 2D lattices
We obtain asymptotic expansions of the spatially discrete 2D heat kernels, or Green's functions on lattices, with respect to powers of time variable up to an arbitrary order and estimate the remainders uniformly on the whole lattice. Unlike in the 1D case, the asymptotics contains a time independent term. The derivation of its spatial asymptotics is the technical core of the paper. Besides numerical applications, the obtained results play a crucial role in the analysis of spatio-temporal patterns for reaction-diffusion equations on lattices, in particular rattling patterns for hysteretic diffusion systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信