{"title":"聚氨酯水泥-预应力钢丝绳加固混凝土t型梁的抗弯模拟分析","authors":"Kexin Zhang","doi":"10.14311/cej.2021.04.0069","DOIUrl":null,"url":null,"abstract":"To verify the effectiveness of polyurethane cement-prestressed steel wire ropes for flexural reinforcement of reinforced concrete T-girders, this paper conducts flexural test research on 12 pieces of T-girder specimens. Through the ABAQUS finite element program to build a model for numerical simulation, the results show polyurethane cement prestressed steel wire rope reinforcement can significantly increase the yield load and ultimate load of reinforced girders. Taking a girder in the test (20mm reinforcement thickness of polyurethane cement) as an example, yield load and ultimate load increased by 61.5% and 102.3% compared to unreinforced girder. The finite element model calculation results of T-girder bending reinforcement are in good agreement with the bending reinforcement test, and the error is only about 2%. For different strength concrete, the yield load increases slightly with the increase of concrete strength. For T-girders with different reinforcement ratios, the bearing capacity of strengthened girders changes significantly with the increase of longitudinal reinforcement ratio. The yield load of girders with reinforcement ratio of 1.82% and 1.35% is 29.84% and 65.85% higher than that of girders with reinforcement ratio of 0.91%. The yield deflection is 13.18% and 3.99% higher than that of girders with reinforcement ratio of 0.91%. It can be concluded that the bending reinforcement method of polyurethane cement prestressed steel wire ropes can effectively strengthen the main girder and ensure the structural safety.","PeriodicalId":21974,"journal":{"name":"Stavební obzor - Civil Engineering Journal","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FLEXURAL SIMULATION ANALYSIS OF RC T-GIRDERS STRENGTHED WITH POLYURETHANE CEMENT-PRESTRESSED STEEL WIRE ROPES\",\"authors\":\"Kexin Zhang\",\"doi\":\"10.14311/cej.2021.04.0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To verify the effectiveness of polyurethane cement-prestressed steel wire ropes for flexural reinforcement of reinforced concrete T-girders, this paper conducts flexural test research on 12 pieces of T-girder specimens. Through the ABAQUS finite element program to build a model for numerical simulation, the results show polyurethane cement prestressed steel wire rope reinforcement can significantly increase the yield load and ultimate load of reinforced girders. Taking a girder in the test (20mm reinforcement thickness of polyurethane cement) as an example, yield load and ultimate load increased by 61.5% and 102.3% compared to unreinforced girder. The finite element model calculation results of T-girder bending reinforcement are in good agreement with the bending reinforcement test, and the error is only about 2%. For different strength concrete, the yield load increases slightly with the increase of concrete strength. For T-girders with different reinforcement ratios, the bearing capacity of strengthened girders changes significantly with the increase of longitudinal reinforcement ratio. The yield load of girders with reinforcement ratio of 1.82% and 1.35% is 29.84% and 65.85% higher than that of girders with reinforcement ratio of 0.91%. The yield deflection is 13.18% and 3.99% higher than that of girders with reinforcement ratio of 0.91%. It can be concluded that the bending reinforcement method of polyurethane cement prestressed steel wire ropes can effectively strengthen the main girder and ensure the structural safety.\",\"PeriodicalId\":21974,\"journal\":{\"name\":\"Stavební obzor - Civil Engineering Journal\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stavební obzor - Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/cej.2021.04.0069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stavební obzor - Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/cej.2021.04.0069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FLEXURAL SIMULATION ANALYSIS OF RC T-GIRDERS STRENGTHED WITH POLYURETHANE CEMENT-PRESTRESSED STEEL WIRE ROPES
To verify the effectiveness of polyurethane cement-prestressed steel wire ropes for flexural reinforcement of reinforced concrete T-girders, this paper conducts flexural test research on 12 pieces of T-girder specimens. Through the ABAQUS finite element program to build a model for numerical simulation, the results show polyurethane cement prestressed steel wire rope reinforcement can significantly increase the yield load and ultimate load of reinforced girders. Taking a girder in the test (20mm reinforcement thickness of polyurethane cement) as an example, yield load and ultimate load increased by 61.5% and 102.3% compared to unreinforced girder. The finite element model calculation results of T-girder bending reinforcement are in good agreement with the bending reinforcement test, and the error is only about 2%. For different strength concrete, the yield load increases slightly with the increase of concrete strength. For T-girders with different reinforcement ratios, the bearing capacity of strengthened girders changes significantly with the increase of longitudinal reinforcement ratio. The yield load of girders with reinforcement ratio of 1.82% and 1.35% is 29.84% and 65.85% higher than that of girders with reinforcement ratio of 0.91%. The yield deflection is 13.18% and 3.99% higher than that of girders with reinforcement ratio of 0.91%. It can be concluded that the bending reinforcement method of polyurethane cement prestressed steel wire ropes can effectively strengthen the main girder and ensure the structural safety.