{"title":"弗洛尔轨迹空间上的移位映射","authors":"U. Frauenfelder, Joa Weber","doi":"10.4310/JSG.2021.v19.n2.a2","DOIUrl":null,"url":null,"abstract":"In this article we give a uniform proof why the shift map on Floer homology trajectory spaces is scale smooth. This proof works for various Floer homologies, periodic, Lagrangian, Hyperk\\\"ahler, elliptic or parabolic, and uses Hilbert space valued Sobolev theory.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The shift map on Floer trajectory spaces\",\"authors\":\"U. Frauenfelder, Joa Weber\",\"doi\":\"10.4310/JSG.2021.v19.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we give a uniform proof why the shift map on Floer homology trajectory spaces is scale smooth. This proof works for various Floer homologies, periodic, Lagrangian, Hyperk\\\\\\\"ahler, elliptic or parabolic, and uses Hilbert space valued Sobolev theory.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2021.v19.n2.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2021.v19.n2.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article we give a uniform proof why the shift map on Floer homology trajectory spaces is scale smooth. This proof works for various Floer homologies, periodic, Lagrangian, Hyperk\"ahler, elliptic or parabolic, and uses Hilbert space valued Sobolev theory.