{"title":"弗洛尔轨迹空间上的移位映射","authors":"U. Frauenfelder, Joa Weber","doi":"10.4310/JSG.2021.v19.n2.a2","DOIUrl":null,"url":null,"abstract":"In this article we give a uniform proof why the shift map on Floer homology trajectory spaces is scale smooth. This proof works for various Floer homologies, periodic, Lagrangian, Hyperk\\\"ahler, elliptic or parabolic, and uses Hilbert space valued Sobolev theory.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"31 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The shift map on Floer trajectory spaces\",\"authors\":\"U. Frauenfelder, Joa Weber\",\"doi\":\"10.4310/JSG.2021.v19.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we give a uniform proof why the shift map on Floer homology trajectory spaces is scale smooth. This proof works for various Floer homologies, periodic, Lagrangian, Hyperk\\\\\\\"ahler, elliptic or parabolic, and uses Hilbert space valued Sobolev theory.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2021.v19.n2.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2021.v19.n2.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this article we give a uniform proof why the shift map on Floer homology trajectory spaces is scale smooth. This proof works for various Floer homologies, periodic, Lagrangian, Hyperk\"ahler, elliptic or parabolic, and uses Hilbert space valued Sobolev theory.
期刊介绍:
Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.