{"title":"对Ornstein-Uhlenbeck算子的精确估计。","authors":"G. Mauceri, S. Meda, P. Sjögren","doi":"10.2422/2036-2145.2004.3.01","DOIUrl":null,"url":null,"abstract":"Let L be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure γ on Rd. We prove a sharp estimate of the operator norm of the imaginary powers of L on Lp(γ), 1 < p < ∞. Then we use this estimate to prove that if b is in [0,∞) and M is a bounded holomorphic function in the sector {z ∈ C : |arg(z − b)| < arcsin |2/p−1|} and satisfies a Hormander-like condition of (nonintegral) order greater than one on the boundary, then the operator M(L) is bounded on Lp(γ). This improves earlier results of the authors with J. Garcia-Cuerva and J.L. Torrea.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"70 1","pages":"447-480"},"PeriodicalIF":1.2000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Sharp estimates for the Ornstein-Uhlenbeck operator.\",\"authors\":\"G. Mauceri, S. Meda, P. Sjögren\",\"doi\":\"10.2422/2036-2145.2004.3.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let L be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure γ on Rd. We prove a sharp estimate of the operator norm of the imaginary powers of L on Lp(γ), 1 < p < ∞. Then we use this estimate to prove that if b is in [0,∞) and M is a bounded holomorphic function in the sector {z ∈ C : |arg(z − b)| < arcsin |2/p−1|} and satisfies a Hormander-like condition of (nonintegral) order greater than one on the boundary, then the operator M(L) is bounded on Lp(γ). This improves earlier results of the authors with J. Garcia-Cuerva and J.L. Torrea.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"70 1\",\"pages\":\"447-480\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.2004.3.01\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.2004.3.01","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 24
摘要
设L是对Rd上的高斯测度γ自伴随的Ornstein-Uhlenbeck算子。我们证明了L在Lp(γ)上的虚幂算子范数的一个锐估计,1 < p <∞。然后我们利用这个估计证明了如果b在[0,∞)上,M是扇形{z∈C: |arg(z−b)| < arcsin |2/p−1}上的有界全纯函数,并且在边界上满足(非积分)阶大于1的类hormander条件,则算子M(L)在Lp(γ)上有界。这改进了J. Garcia-Cuerva和J. l . Torrea的早期研究结果。
Sharp estimates for the Ornstein-Uhlenbeck operator.
Let L be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure γ on Rd. We prove a sharp estimate of the operator norm of the imaginary powers of L on Lp(γ), 1 < p < ∞. Then we use this estimate to prove that if b is in [0,∞) and M is a bounded holomorphic function in the sector {z ∈ C : |arg(z − b)| < arcsin |2/p−1|} and satisfies a Hormander-like condition of (nonintegral) order greater than one on the boundary, then the operator M(L) is bounded on Lp(γ). This improves earlier results of the authors with J. Garcia-Cuerva and J.L. Torrea.
期刊介绍:
The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication.
The Annals of the Normale Scuola di Pisa - Science Class is published quarterly
Soft cover, 17x24