对Ornstein-Uhlenbeck算子的精确估计。

IF 1.2 2区 数学 Q1 MATHEMATICS
G. Mauceri, S. Meda, P. Sjögren
{"title":"对Ornstein-Uhlenbeck算子的精确估计。","authors":"G. Mauceri, S. Meda, P. Sjögren","doi":"10.2422/2036-2145.2004.3.01","DOIUrl":null,"url":null,"abstract":"Let L be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure γ on Rd. We prove a sharp estimate of the operator norm of the imaginary powers of L on Lp(γ), 1 < p < ∞. Then we use this estimate to prove that if b is in [0,∞) and M is a bounded holomorphic function in the sector {z ∈ C : |arg(z − b)| < arcsin |2/p−1|} and satisfies a Hormander-like condition of (nonintegral) order greater than one on the boundary, then the operator M(L) is bounded on Lp(γ). This improves earlier results of the authors with J. Garcia-Cuerva and J.L. Torrea.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"70 1","pages":"447-480"},"PeriodicalIF":1.2000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Sharp estimates for the Ornstein-Uhlenbeck operator.\",\"authors\":\"G. Mauceri, S. Meda, P. Sjögren\",\"doi\":\"10.2422/2036-2145.2004.3.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let L be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure γ on Rd. We prove a sharp estimate of the operator norm of the imaginary powers of L on Lp(γ), 1 < p < ∞. Then we use this estimate to prove that if b is in [0,∞) and M is a bounded holomorphic function in the sector {z ∈ C : |arg(z − b)| < arcsin |2/p−1|} and satisfies a Hormander-like condition of (nonintegral) order greater than one on the boundary, then the operator M(L) is bounded on Lp(γ). This improves earlier results of the authors with J. Garcia-Cuerva and J.L. Torrea.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"70 1\",\"pages\":\"447-480\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.2004.3.01\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.2004.3.01","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 24

摘要

设L是对Rd上的高斯测度γ自伴随的Ornstein-Uhlenbeck算子。我们证明了L在Lp(γ)上的虚幂算子范数的一个锐估计,1 < p <∞。然后我们利用这个估计证明了如果b在[0,∞)上,M是扇形{z∈C: |arg(z−b)| < arcsin |2/p−1}上的有界全纯函数,并且在边界上满足(非积分)阶大于1的类hormander条件,则算子M(L)在Lp(γ)上有界。这改进了J. Garcia-Cuerva和J. l . Torrea的早期研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp estimates for the Ornstein-Uhlenbeck operator.
Let L be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure γ on Rd. We prove a sharp estimate of the operator norm of the imaginary powers of L on Lp(γ), 1 < p < ∞. Then we use this estimate to prove that if b is in [0,∞) and M is a bounded holomorphic function in the sector {z ∈ C : |arg(z − b)| < arcsin |2/p−1|} and satisfies a Hormander-like condition of (nonintegral) order greater than one on the boundary, then the operator M(L) is bounded on Lp(γ). This improves earlier results of the authors with J. Garcia-Cuerva and J.L. Torrea.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信