Tomoko Yasuda, Y. Fukumoto, K. Kuroda, D. Hanajima, M. Waki, Kazuyoshi Suzuki
{"title":"生物过滤器处理禽畜粪便堆肥废气中氮的归宿和负责氨去除的微生物群落的适应","authors":"Tomoko Yasuda, Y. Fukumoto, K. Kuroda, D. Hanajima, M. Waki, Kazuyoshi Suzuki","doi":"10.6090/jarq.56.25","DOIUrl":null,"url":null,"abstract":"Treating NH 3 -loaded gases is necessary for improved livestock management. Nitrification, the sequential oxidation of NH 3 to NO 3 − via NO 2 − , is an important microbial process for effective long-term NH 3 removal. Denitrification, a microbial respiration process that reduces NO 3 − and NO 2 − to N 2 under anaerobic conditions, can also contribute to nitrogen conversion in biofiltration systems. Understanding these microbial processes is imperative to control NH 3 removal better and achieve nitrogen balance in biofiltration. In this review, we discuss the functions and compositions of the microbial community responsible for nitrification and denitrification in a biofiltration system, along with the relationship between these processes and the nitrogen mass balance. Our results indicate that both nitrification and denitrification could be achieved by a consortium of microbes well adapted to the ecosystem in a full-scale biofilter. Moreover, the microbial community was controlled by substrate availability. Nitrogen removal potential was up to 39% in a laboratory-scale biofilter with intermittent water recirculation, and the unknown nitrogen loss was considered mainly denitrified. Under gradual accumulation of nitrogenous compounds, the gamma proteobacterial group contributes to NH 3 oxidization. These findings will improve our understanding of microbial fluctuations and the complex behavior of nitrifiers and denitrifiers within an NH 3 -loaded biofiltration system.","PeriodicalId":14700,"journal":{"name":"Jarq-japan Agricultural Research Quarterly","volume":"23 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nitrogen Fate and Adaptation of the Microbial Community Responsible for Ammonia Removal in a Biofilter Treating Waste Gas from Livestock Manure Composting\",\"authors\":\"Tomoko Yasuda, Y. Fukumoto, K. Kuroda, D. Hanajima, M. Waki, Kazuyoshi Suzuki\",\"doi\":\"10.6090/jarq.56.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Treating NH 3 -loaded gases is necessary for improved livestock management. Nitrification, the sequential oxidation of NH 3 to NO 3 − via NO 2 − , is an important microbial process for effective long-term NH 3 removal. Denitrification, a microbial respiration process that reduces NO 3 − and NO 2 − to N 2 under anaerobic conditions, can also contribute to nitrogen conversion in biofiltration systems. Understanding these microbial processes is imperative to control NH 3 removal better and achieve nitrogen balance in biofiltration. In this review, we discuss the functions and compositions of the microbial community responsible for nitrification and denitrification in a biofiltration system, along with the relationship between these processes and the nitrogen mass balance. Our results indicate that both nitrification and denitrification could be achieved by a consortium of microbes well adapted to the ecosystem in a full-scale biofilter. Moreover, the microbial community was controlled by substrate availability. Nitrogen removal potential was up to 39% in a laboratory-scale biofilter with intermittent water recirculation, and the unknown nitrogen loss was considered mainly denitrified. Under gradual accumulation of nitrogenous compounds, the gamma proteobacterial group contributes to NH 3 oxidization. These findings will improve our understanding of microbial fluctuations and the complex behavior of nitrifiers and denitrifiers within an NH 3 -loaded biofiltration system.\",\"PeriodicalId\":14700,\"journal\":{\"name\":\"Jarq-japan Agricultural Research Quarterly\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jarq-japan Agricultural Research Quarterly\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.6090/jarq.56.25\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jarq-japan Agricultural Research Quarterly","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.6090/jarq.56.25","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nitrogen Fate and Adaptation of the Microbial Community Responsible for Ammonia Removal in a Biofilter Treating Waste Gas from Livestock Manure Composting
Treating NH 3 -loaded gases is necessary for improved livestock management. Nitrification, the sequential oxidation of NH 3 to NO 3 − via NO 2 − , is an important microbial process for effective long-term NH 3 removal. Denitrification, a microbial respiration process that reduces NO 3 − and NO 2 − to N 2 under anaerobic conditions, can also contribute to nitrogen conversion in biofiltration systems. Understanding these microbial processes is imperative to control NH 3 removal better and achieve nitrogen balance in biofiltration. In this review, we discuss the functions and compositions of the microbial community responsible for nitrification and denitrification in a biofiltration system, along with the relationship between these processes and the nitrogen mass balance. Our results indicate that both nitrification and denitrification could be achieved by a consortium of microbes well adapted to the ecosystem in a full-scale biofilter. Moreover, the microbial community was controlled by substrate availability. Nitrogen removal potential was up to 39% in a laboratory-scale biofilter with intermittent water recirculation, and the unknown nitrogen loss was considered mainly denitrified. Under gradual accumulation of nitrogenous compounds, the gamma proteobacterial group contributes to NH 3 oxidization. These findings will improve our understanding of microbial fluctuations and the complex behavior of nitrifiers and denitrifiers within an NH 3 -loaded biofiltration system.
期刊介绍:
The Japan Agricultural Research Quarterly (JARQ) is a publication of the Japan International Research Center for Agricultural Sciences (JIRCAS), which provides readers overseas with the latest information on key achievements and developments in agricultural research in Japan, with the expectation that this information would contribute to the agricultural development of countries in tropical and subtropical regions.