基于草图统计的泛私有算法

Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, R. Wright
{"title":"基于草图统计的泛私有算法","authors":"Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, R. Wright","doi":"10.1145/1989284.1989290","DOIUrl":null,"url":null,"abstract":"Consider fully dynamic data, where we track data as it gets inserted and deleted. There are well developed notions of private data analyses with dynamic data, for example, using differential privacy. We want to go beyond privacy, and consider privacy together with security, formulated recently as pan-privacy by Dwork et al. (ICS 2010). Informally, pan-privacy preserves differential privacy while computing desired statistics on the data, even if the internal memory of the algorithm is compromised (say, by a malicious break-in or insider curiosity or by fiat by the government or law).\n We study pan-private algorithms for basic analyses, like estimating distinct count, moments, and heavy hitter count, with fully dynamic data. We present the first known pan-private algorithms for these problems in the fully dynamic model. Our algorithms rely on sketching techniques popular in streaming: in some cases, we add suitable noise to a previously known sketch, using a novel approach of calibrating noise to the underlying problem structure and the projection matrix of the sketch; in other cases, we maintain certain statistics on sketches; in yet others, we define novel sketches. We also present the first known lower bounds explicitly for pan privacy, showing our results to be nearly optimal for these problems. Our lower bounds are stronger than those implied by differential privacy or dynamic data streaming alone and hold even if unbounded memory and/or unbounded processing time are allowed. The lower bounds use a noisy decoding argument and exploit a connection between pan-private algorithms and data sanitization.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"2009 1","pages":"37-48"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Pan-private algorithms via statistics on sketches\",\"authors\":\"Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, R. Wright\",\"doi\":\"10.1145/1989284.1989290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider fully dynamic data, where we track data as it gets inserted and deleted. There are well developed notions of private data analyses with dynamic data, for example, using differential privacy. We want to go beyond privacy, and consider privacy together with security, formulated recently as pan-privacy by Dwork et al. (ICS 2010). Informally, pan-privacy preserves differential privacy while computing desired statistics on the data, even if the internal memory of the algorithm is compromised (say, by a malicious break-in or insider curiosity or by fiat by the government or law).\\n We study pan-private algorithms for basic analyses, like estimating distinct count, moments, and heavy hitter count, with fully dynamic data. We present the first known pan-private algorithms for these problems in the fully dynamic model. Our algorithms rely on sketching techniques popular in streaming: in some cases, we add suitable noise to a previously known sketch, using a novel approach of calibrating noise to the underlying problem structure and the projection matrix of the sketch; in other cases, we maintain certain statistics on sketches; in yet others, we define novel sketches. We also present the first known lower bounds explicitly for pan privacy, showing our results to be nearly optimal for these problems. Our lower bounds are stronger than those implied by differential privacy or dynamic data streaming alone and hold even if unbounded memory and/or unbounded processing time are allowed. The lower bounds use a noisy decoding argument and exploit a connection between pan-private algorithms and data sanitization.\",\"PeriodicalId\":92118,\"journal\":{\"name\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"volume\":\"2009 1\",\"pages\":\"37-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1989284.1989290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1989284.1989290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

考虑完全动态的数据,我们跟踪数据的插入和删除。对于动态数据的私有数据分析,已经有了很好的概念,例如,使用差分隐私。我们希望超越隐私,并将隐私与安全一起考虑,Dwork等人最近将其表述为泛隐私(ICS 2010)。非正式地,泛隐私在计算数据所需统计数据的同时,保留了差异隐私,即使算法的内部内存受到损害(例如,恶意入侵或内部好奇心或政府或法律的命令)。我们研究了用于基本分析的泛私有算法,如估计完全动态数据的不同计数,矩和重拳计数。我们提出了已知的第一个在全动态模型中解决这些问题的泛私有算法。我们的算法依赖于流媒体中流行的草图绘制技术:在某些情况下,我们使用一种新颖的方法将噪声校准到草图的潜在问题结构和投影矩阵,在先前已知的草图中添加合适的噪声;在其他情况下,我们对草图保持一定的统计数据;在另一些例子中,我们定义了新颖的草图。我们还明确地给出了pan隐私的第一个已知下界,表明我们的结果对于这些问题几乎是最优的。我们的下限比单独的差分隐私或动态数据流所隐含的下限更强,即使允许无限内存和/或无限处理时间,下限也保持不变。下界使用一个嘈杂的解码参数,并利用泛私有算法和数据清理之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pan-private algorithms via statistics on sketches
Consider fully dynamic data, where we track data as it gets inserted and deleted. There are well developed notions of private data analyses with dynamic data, for example, using differential privacy. We want to go beyond privacy, and consider privacy together with security, formulated recently as pan-privacy by Dwork et al. (ICS 2010). Informally, pan-privacy preserves differential privacy while computing desired statistics on the data, even if the internal memory of the algorithm is compromised (say, by a malicious break-in or insider curiosity or by fiat by the government or law). We study pan-private algorithms for basic analyses, like estimating distinct count, moments, and heavy hitter count, with fully dynamic data. We present the first known pan-private algorithms for these problems in the fully dynamic model. Our algorithms rely on sketching techniques popular in streaming: in some cases, we add suitable noise to a previously known sketch, using a novel approach of calibrating noise to the underlying problem structure and the projection matrix of the sketch; in other cases, we maintain certain statistics on sketches; in yet others, we define novel sketches. We also present the first known lower bounds explicitly for pan privacy, showing our results to be nearly optimal for these problems. Our lower bounds are stronger than those implied by differential privacy or dynamic data streaming alone and hold even if unbounded memory and/or unbounded processing time are allowed. The lower bounds use a noisy decoding argument and exploit a connection between pan-private algorithms and data sanitization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信