基于线性内容编码的蜂窝网络最优地理缓存

J. Elias, B. Błaszczyszyn
{"title":"基于线性内容编码的蜂窝网络最优地理缓存","authors":"J. Elias, B. Błaszczyszyn","doi":"10.23919/WIOPT.2017.7959865","DOIUrl":null,"url":null,"abstract":"We state and solve a problem of the optimal geographic caching of content in cellular networks, where linear combinations of contents are stored in the caches of base stations. We consider a general content popularity distribution and a general distribution of the number of stations covering the typical location in the network. We are looking for a policy of content caching maximizing the probability of serving the typical content request from the caches of covering stations. The problem has a special form of monotone sub-modular set function maximization. Using dynamic programming, we find a deterministic policy solving the problem. We also consider two natural greedy caching policies. We evaluate our policies considering two popular stochastic geometric coverage models: the Boolean one and the Signal-to-Interference-and-Noise-Ratio one, assuming Zipf popularity distribution. Our numerical results show that the proposed deterministic policies are in general not worse than some randomized policy considered in the literature and can further improve the total hit probability in the moderately high coverage regime.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"17 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Optimal geographic caching in cellular networks with linear content coding\",\"authors\":\"J. Elias, B. Błaszczyszyn\",\"doi\":\"10.23919/WIOPT.2017.7959865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We state and solve a problem of the optimal geographic caching of content in cellular networks, where linear combinations of contents are stored in the caches of base stations. We consider a general content popularity distribution and a general distribution of the number of stations covering the typical location in the network. We are looking for a policy of content caching maximizing the probability of serving the typical content request from the caches of covering stations. The problem has a special form of monotone sub-modular set function maximization. Using dynamic programming, we find a deterministic policy solving the problem. We also consider two natural greedy caching policies. We evaluate our policies considering two popular stochastic geometric coverage models: the Boolean one and the Signal-to-Interference-and-Noise-Ratio one, assuming Zipf popularity distribution. Our numerical results show that the proposed deterministic policies are in general not worse than some randomized policy considered in the literature and can further improve the total hit probability in the moderately high coverage regime.\",\"PeriodicalId\":6630,\"journal\":{\"name\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":\"17 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WIOPT.2017.7959865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们陈述并解决了蜂窝网络中内容的最优地理缓存问题,其中内容的线性组合存储在基站的缓存中。我们考虑一般的内容流行度分布和覆盖网络中典型位置的电台数量的一般分布。我们正在寻找一种内容缓存策略,使覆盖站缓存的典型内容请求的服务概率最大化。该问题具有单调子模集函数最大化的一种特殊形式。利用动态规划的方法,找到了一种求解该问题的确定性策略。我们还考虑了两种自然的贪婪缓存策略。我们考虑两种流行的随机几何覆盖模型来评估我们的策略:布尔模型和信噪比模型,假设Zipf流行分布。数值结果表明,所提出的确定性策略总体上并不比文献中考虑的随机策略差,并且可以进一步提高中等高覆盖率下的总命中概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal geographic caching in cellular networks with linear content coding
We state and solve a problem of the optimal geographic caching of content in cellular networks, where linear combinations of contents are stored in the caches of base stations. We consider a general content popularity distribution and a general distribution of the number of stations covering the typical location in the network. We are looking for a policy of content caching maximizing the probability of serving the typical content request from the caches of covering stations. The problem has a special form of monotone sub-modular set function maximization. Using dynamic programming, we find a deterministic policy solving the problem. We also consider two natural greedy caching policies. We evaluate our policies considering two popular stochastic geometric coverage models: the Boolean one and the Signal-to-Interference-and-Noise-Ratio one, assuming Zipf popularity distribution. Our numerical results show that the proposed deterministic policies are in general not worse than some randomized policy considered in the literature and can further improve the total hit probability in the moderately high coverage regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信