高效节能的HEVC反变换和去量化硬件实现

M. Tikekar, Chao-Tsung Huang, V. Sze, A. Chandrakasan
{"title":"高效节能的HEVC反变换和去量化硬件实现","authors":"M. Tikekar, Chao-Tsung Huang, V. Sze, A. Chandrakasan","doi":"10.1109/ICIP.2014.7025421","DOIUrl":null,"url":null,"abstract":"High Efficiency Video Coding (HEVC) inverse transform for residual coding uses 2-D 4×4 to 32×32 transforms with higher precision as compared to H.264/AVC's 4×4 and 8×8 transforms resulting in an increased hardware complexity. In this paper, an energy and area-efficient VLSI architecture of an HEVC-compliant inverse transform and dequantization engine is presented. We implement a pipelining scheme to process all transform sizes at a minimum throughput of 2 pixel/cycle with zero-column skipping for improved throughput. We use data-gating in the 1-D Inverse Discrete Cosine Transform engine to improve energy-efficiency for smaller transform sizes. A high-density SRAM-based transpose memory is used for an area-efficient design. This design supports decoding of 4K Ultra-HD (3840×2160) video at 30 frame/sec. The inverse transform engine takes 98.1 kgate logic, 16.4 kbit SRAM and 10.82 pJ/pixel while the dequantization engine takes 27.7 kgate logic, 8.2 kbit SRAM and 1.10 pJ/pixel in 40 nm CMOS technology. Although larger transforms require more computation per coefficient, they typically contain a smaller proportion of non-zero coefficients. Due to this trade-off, larger transforms can be more energy-efficient.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"21 1","pages":"2100-2104"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Energy and area-efficient hardware implementation of HEVC inverse transform and dequantization\",\"authors\":\"M. Tikekar, Chao-Tsung Huang, V. Sze, A. Chandrakasan\",\"doi\":\"10.1109/ICIP.2014.7025421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High Efficiency Video Coding (HEVC) inverse transform for residual coding uses 2-D 4×4 to 32×32 transforms with higher precision as compared to H.264/AVC's 4×4 and 8×8 transforms resulting in an increased hardware complexity. In this paper, an energy and area-efficient VLSI architecture of an HEVC-compliant inverse transform and dequantization engine is presented. We implement a pipelining scheme to process all transform sizes at a minimum throughput of 2 pixel/cycle with zero-column skipping for improved throughput. We use data-gating in the 1-D Inverse Discrete Cosine Transform engine to improve energy-efficiency for smaller transform sizes. A high-density SRAM-based transpose memory is used for an area-efficient design. This design supports decoding of 4K Ultra-HD (3840×2160) video at 30 frame/sec. The inverse transform engine takes 98.1 kgate logic, 16.4 kbit SRAM and 10.82 pJ/pixel while the dequantization engine takes 27.7 kgate logic, 8.2 kbit SRAM and 1.10 pJ/pixel in 40 nm CMOS technology. Although larger transforms require more computation per coefficient, they typically contain a smaller proportion of non-zero coefficients. Due to this trade-off, larger transforms can be more energy-efficient.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"21 1\",\"pages\":\"2100-2104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

与H.264/AVC的4×4和8×8变换相比,剩余编码的高效视频编码(HEVC)反变换使用二维4×4到32×32的变换具有更高的精度,从而增加了硬件复杂性。本文提出了一种符合hevc的反变换和去量化引擎的高效节能VLSI架构。我们实现了一个流水线方案,以最小2像素/周期的吞吐量处理所有转换大小,并且零列跳变以提高吞吐量。我们在一维逆离散余弦变换引擎中使用数据门控来提高较小变换尺寸的能量效率。高密度的基于sram的转置存储器用于面积高效的设计。本设计支持30帧/秒的4K超高清(3840×2160)视频解码。逆变换引擎采用98.1 kgate逻辑、16.4 kbit SRAM和10.82 pJ/pixel,而去量化引擎采用27.7 kgate逻辑、8.2 kbit SRAM和1.10 pJ/pixel,采用40 nm CMOS技术。虽然较大的变换需要每个系数更多的计算,但它们通常包含较小比例的非零系数。由于这种权衡,较大的转换可能更节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy and area-efficient hardware implementation of HEVC inverse transform and dequantization
High Efficiency Video Coding (HEVC) inverse transform for residual coding uses 2-D 4×4 to 32×32 transforms with higher precision as compared to H.264/AVC's 4×4 and 8×8 transforms resulting in an increased hardware complexity. In this paper, an energy and area-efficient VLSI architecture of an HEVC-compliant inverse transform and dequantization engine is presented. We implement a pipelining scheme to process all transform sizes at a minimum throughput of 2 pixel/cycle with zero-column skipping for improved throughput. We use data-gating in the 1-D Inverse Discrete Cosine Transform engine to improve energy-efficiency for smaller transform sizes. A high-density SRAM-based transpose memory is used for an area-efficient design. This design supports decoding of 4K Ultra-HD (3840×2160) video at 30 frame/sec. The inverse transform engine takes 98.1 kgate logic, 16.4 kbit SRAM and 10.82 pJ/pixel while the dequantization engine takes 27.7 kgate logic, 8.2 kbit SRAM and 1.10 pJ/pixel in 40 nm CMOS technology. Although larger transforms require more computation per coefficient, they typically contain a smaller proportion of non-zero coefficients. Due to this trade-off, larger transforms can be more energy-efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信