强效环保型绿色缓蚀剂的热力学和动力学研究对低碳钢在HCl溶液中腐蚀的控制研究。

A. Obike, K. Uwakwe, Ebeagwu Mc, P. Okafor, Ogili Ec
{"title":"强效环保型绿色缓蚀剂的热力学和动力学研究对低碳钢在HCl溶液中腐蚀的控制研究。","authors":"A. Obike, K. Uwakwe, Ebeagwu Mc, P. Okafor, Ogili Ec","doi":"10.4172/2161-0398.1000264","DOIUrl":null,"url":null,"abstract":"The inhibitive action of the methanol extracts of three powerful eco-friendly green Inhibitors; Costus afer (COA), Uvaria chamae (UVC), and Xylopia aethiopica (XYA) leaves on the corrosion of mild steel in 2.5 M HCl solutions with inhibitor concentrations of 0.5 g/L, 1.0 g/L, 2.0 g/L and 4.0 g/L, at the temperatures of 30°C and 60°C was studied using gravimetric (weight loss) and gasometric (hydrogen evolution) techniques to determine their inhibition efficiencies as well as to characterize the mechanism of inhibition of these three green inhibitors. The gravimetric technique was done for 5 days (120 Hours). Results indicate that the leave extracts inhibit the corrosion process powerfully. COA, UVC and XYA extracts showed inhibition efficiency of (83.7, 84.6 and 87.0) and (85.0, 62.5 and 76.1) for gravimetric (weight loss) and gasometric analysis respectively. The Inhibition efficiency was found to increase with an increase in the extract concentration and decrease with an increase in time(days) and temperature. The inhibition efficiencies followed the trend XYA>UVC>COA and COA>XYA>UVC in gravimetric and gasometric analysis respectively. Thermodynamic considerations revealed that the activation energy, Ea increased in the presence of the plant extracts. The kinetic data confirmed the reaction process to be first order. Adsorption of the plant extracts on mild steel surface is an exothermic process and spontaneous as deduced by mostly negative Qads mean values of -7.40 KJ/mol, -2.14 KJ/mol and -32.18 KJ/mol for COA, UVC and XYA and negative ΔGads values of -9.28 KJ/mol and -12. 0 KJ/mol for COA, -9.46 KJ/mol and -11.23 KJ/mol for UVC and -7.73 KJ/mol and 6.29 KJ/mol for XYA at 30°C and 60°C respectively. The mechanism of adsorption proposed for the plant extract on the mild steel surface is physical adsorption. Experimental data obtained fit the Langmuir adsorption isotherm.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":"42 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Thermodynamic and Kinetic Studies of Powerful Eco Friendly Green Inhibitors; Costus afer, Uvaria chamae and Xylopia aethiopia for the Control of Mild Steel Corrosion in HCl Solution.\",\"authors\":\"A. Obike, K. Uwakwe, Ebeagwu Mc, P. Okafor, Ogili Ec\",\"doi\":\"10.4172/2161-0398.1000264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inhibitive action of the methanol extracts of three powerful eco-friendly green Inhibitors; Costus afer (COA), Uvaria chamae (UVC), and Xylopia aethiopica (XYA) leaves on the corrosion of mild steel in 2.5 M HCl solutions with inhibitor concentrations of 0.5 g/L, 1.0 g/L, 2.0 g/L and 4.0 g/L, at the temperatures of 30°C and 60°C was studied using gravimetric (weight loss) and gasometric (hydrogen evolution) techniques to determine their inhibition efficiencies as well as to characterize the mechanism of inhibition of these three green inhibitors. The gravimetric technique was done for 5 days (120 Hours). Results indicate that the leave extracts inhibit the corrosion process powerfully. COA, UVC and XYA extracts showed inhibition efficiency of (83.7, 84.6 and 87.0) and (85.0, 62.5 and 76.1) for gravimetric (weight loss) and gasometric analysis respectively. The Inhibition efficiency was found to increase with an increase in the extract concentration and decrease with an increase in time(days) and temperature. The inhibition efficiencies followed the trend XYA>UVC>COA and COA>XYA>UVC in gravimetric and gasometric analysis respectively. Thermodynamic considerations revealed that the activation energy, Ea increased in the presence of the plant extracts. The kinetic data confirmed the reaction process to be first order. Adsorption of the plant extracts on mild steel surface is an exothermic process and spontaneous as deduced by mostly negative Qads mean values of -7.40 KJ/mol, -2.14 KJ/mol and -32.18 KJ/mol for COA, UVC and XYA and negative ΔGads values of -9.28 KJ/mol and -12. 0 KJ/mol for COA, -9.46 KJ/mol and -11.23 KJ/mol for UVC and -7.73 KJ/mol and 6.29 KJ/mol for XYA at 30°C and 60°C respectively. The mechanism of adsorption proposed for the plant extract on the mild steel surface is physical adsorption. Experimental data obtained fit the Langmuir adsorption isotherm.\",\"PeriodicalId\":94103,\"journal\":{\"name\":\"Journal of physical chemistry & biophysics\",\"volume\":\"42 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physical chemistry & biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2161-0398.1000264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physical chemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0398.1000264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

三种强效环保绿色抑制剂甲醇提取物的抑制作用采用失重法(失重法)和气相法(析氢法)研究了木香叶(COA)、香木香叶(UVC)和青木叶(XYA)在0.5 g/L、1.0 g/L、2.0 g/L和4.0 g/L缓蚀剂浓度为2.5 M、温度为30°C和60°C的HCl溶液中对低碳钢的缓蚀效果,并对这三种绿色缓蚀剂的缓蚀机理进行了表征。重力法测定5天(120小时)。结果表明,叶提取物对腐蚀过程有较强的抑制作用。COA、UVC和XYA提取物对失重和气相分析的抑制率分别为83.7、84.6和87.0,85.0、62.5和76.1。抑制效果随提取物浓度的增加而增加,随时间(d)和温度的增加而降低。在重量分析和气相分析中,抑制效率分别为XYA>UVC>COA和COA>XYA>UVC。热力学方面的考虑表明,在植物提取物的存在下,活化能Ea增加。动力学数据证实反应过程为一级反应。COA、UVC和XYA的Qads平均值为-7.40 KJ/mol、-2.14 KJ/mol和-32.18 KJ/mol,负ΔGads值为-9.28 KJ/mol和-12,表明植物提取物在低碳钢表面的吸附是一个自发的放热过程。在30℃和60℃条件下,COA为0 KJ/mol, UVC为-9.46 KJ/mol和-11.23 KJ/mol, XYA为-7.73 KJ/mol和6.29 KJ/mol。提出植物提取物在低碳钢表面的吸附机理为物理吸附。实验数据符合Langmuir吸附等温线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic and Kinetic Studies of Powerful Eco Friendly Green Inhibitors; Costus afer, Uvaria chamae and Xylopia aethiopia for the Control of Mild Steel Corrosion in HCl Solution.
The inhibitive action of the methanol extracts of three powerful eco-friendly green Inhibitors; Costus afer (COA), Uvaria chamae (UVC), and Xylopia aethiopica (XYA) leaves on the corrosion of mild steel in 2.5 M HCl solutions with inhibitor concentrations of 0.5 g/L, 1.0 g/L, 2.0 g/L and 4.0 g/L, at the temperatures of 30°C and 60°C was studied using gravimetric (weight loss) and gasometric (hydrogen evolution) techniques to determine their inhibition efficiencies as well as to characterize the mechanism of inhibition of these three green inhibitors. The gravimetric technique was done for 5 days (120 Hours). Results indicate that the leave extracts inhibit the corrosion process powerfully. COA, UVC and XYA extracts showed inhibition efficiency of (83.7, 84.6 and 87.0) and (85.0, 62.5 and 76.1) for gravimetric (weight loss) and gasometric analysis respectively. The Inhibition efficiency was found to increase with an increase in the extract concentration and decrease with an increase in time(days) and temperature. The inhibition efficiencies followed the trend XYA>UVC>COA and COA>XYA>UVC in gravimetric and gasometric analysis respectively. Thermodynamic considerations revealed that the activation energy, Ea increased in the presence of the plant extracts. The kinetic data confirmed the reaction process to be first order. Adsorption of the plant extracts on mild steel surface is an exothermic process and spontaneous as deduced by mostly negative Qads mean values of -7.40 KJ/mol, -2.14 KJ/mol and -32.18 KJ/mol for COA, UVC and XYA and negative ΔGads values of -9.28 KJ/mol and -12. 0 KJ/mol for COA, -9.46 KJ/mol and -11.23 KJ/mol for UVC and -7.73 KJ/mol and 6.29 KJ/mol for XYA at 30°C and 60°C respectively. The mechanism of adsorption proposed for the plant extract on the mild steel surface is physical adsorption. Experimental data obtained fit the Langmuir adsorption isotherm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信