非联合支持哈密顿量谱不变量的一个极大不等式

Pub Date : 2021-02-15 DOI:10.4310/jsg.2022.v20.n5.a6
Shira Tanny
{"title":"非联合支持哈密顿量谱不变量的一个极大不等式","authors":"Shira Tanny","doi":"10.4310/jsg.2022.v20.n5.a6","DOIUrl":null,"url":null,"abstract":"We study the relation between spectral invariants of disjointly supported Hamiltonians and of their sum. On aspherical manifolds, such a relation was established by Humili\\`ere, Le Roux and Seyfaddini. We show that a weaker statement holds in a wider setting, and derive applications to Polterovich's Poisson bracket invariant and to Entov and Polterovich's notion of superheavy sets.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A max inequality for spectral invariants of disjointly supported Hamiltonians\",\"authors\":\"Shira Tanny\",\"doi\":\"10.4310/jsg.2022.v20.n5.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the relation between spectral invariants of disjointly supported Hamiltonians and of their sum. On aspherical manifolds, such a relation was established by Humili\\\\`ere, Le Roux and Seyfaddini. We show that a weaker statement holds in a wider setting, and derive applications to Polterovich's Poisson bracket invariant and to Entov and Polterovich's notion of superheavy sets.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n5.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n5.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了非联合支持哈密顿算子的谱不变量与其和的关系。在非球面流形上,Humili ' ere、Le Roux和Seyfaddini建立了这种关系。我们证明了一个较弱的命题在更广泛的情况下成立,并推导了Polterovich的泊松括号不变量以及Entov和Polterovich的超重集概念的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A max inequality for spectral invariants of disjointly supported Hamiltonians
We study the relation between spectral invariants of disjointly supported Hamiltonians and of their sum. On aspherical manifolds, such a relation was established by Humili\`ere, Le Roux and Seyfaddini. We show that a weaker statement holds in a wider setting, and derive applications to Polterovich's Poisson bracket invariant and to Entov and Polterovich's notion of superheavy sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信