广义类收缩不等式算子junck -多步- sp迭代的强收敛性和稳定性

H. Akewe
{"title":"广义类收缩不等式算子junck -多步- sp迭代的强收敛性和稳定性","authors":"H. Akewe","doi":"10.3968/J.ANS.1715787020120503.1512","DOIUrl":null,"url":null,"abstract":"We introduce the Jungck-multistep-SP iteration and prove some convergence as well as stabiilty results for a pair of weakly compatible generalized contractive-like inequality operators defined on a Banach space. As corollaries, the results show that the Jungck-SP and Jungck-Mann iterations can also be used to approximate the common fixed points of such operators. The results are improvements, generalizations and extensions of the work of Chugh and Kumar (2011). Consequently, several results in literature are generalized. Key words : Jungck-multistep-SP iteration","PeriodicalId":7348,"journal":{"name":"Advances in Natural Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strong Convergence and Stability of Jungck-Multistep-SP Iteration for Generalized Contractive-Like Inequality Operators\",\"authors\":\"H. Akewe\",\"doi\":\"10.3968/J.ANS.1715787020120503.1512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the Jungck-multistep-SP iteration and prove some convergence as well as stabiilty results for a pair of weakly compatible generalized contractive-like inequality operators defined on a Banach space. As corollaries, the results show that the Jungck-SP and Jungck-Mann iterations can also be used to approximate the common fixed points of such operators. The results are improvements, generalizations and extensions of the work of Chugh and Kumar (2011). Consequently, several results in literature are generalized. Key words : Jungck-multistep-SP iteration\",\"PeriodicalId\":7348,\"journal\":{\"name\":\"Advances in Natural Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3968/J.ANS.1715787020120503.1512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3968/J.ANS.1715787020120503.1512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

引入jungck -多步- sp迭代,证明了Banach空间上定义的一对弱相容广义类收缩不等式算子的收敛性和稳定性。作为推论,结果表明Jungck-SP和Jungck-Mann迭代也可以用来近似这些算子的公共不动点。结果是对Chugh和Kumar(2011)的工作的改进、概括和扩展。因此,对文献中的一些结果进行了推广。关键词:jungck -多步- sp迭代
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Convergence and Stability of Jungck-Multistep-SP Iteration for Generalized Contractive-Like Inequality Operators
We introduce the Jungck-multistep-SP iteration and prove some convergence as well as stabiilty results for a pair of weakly compatible generalized contractive-like inequality operators defined on a Banach space. As corollaries, the results show that the Jungck-SP and Jungck-Mann iterations can also be used to approximate the common fixed points of such operators. The results are improvements, generalizations and extensions of the work of Chugh and Kumar (2011). Consequently, several results in literature are generalized. Key words : Jungck-multistep-SP iteration
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信