随机自由能系统中的拉伸指数弛豫

C. Dominicis, H. Orland, F. Lainée
{"title":"随机自由能系统中的拉伸指数弛豫","authors":"C. Dominicis, H. Orland, F. Lainée","doi":"10.1051/JPHYSLET:019850046011046300","DOIUrl":null,"url":null,"abstract":"A spin glass phase is characterized by a large number of quasi degenerate states (or walley bottoms). Their free energies F a =F o +f a , where f a is a non extensive fluctuation, have recently been shown to be random independent variables, as in Derrida's model. Relaxation to equilibrium of such systems is considered and a simple approximation to the transition probability (in the master equation) is considered that leads to a (random) relaxation time τ∼expβΔF with −β(F o +ΔF)= In a Σexp(−βF a ). The ensuing relaxation to equilibrium is shown to be a stretched exponential a behaviour common to a wide class of materials. The dependence of the result on the particular choice of the transition probability is touched upon Etude des verres de spin, caracterises par un grand nombre d'etats (ou fonds de vallees) quasi degeneres, d'energies libres F a =F o +f a (ou fa est une fluctuation non extensive) se comportant en variables aleatoires independantes comme dans le modele de Derrida. Analyse de la relaxation vers l'equilibre a l'aide d'une approximation simple pour la probabilite de transition (dans l'equation maitresse) qui conduit a un temps de relaxation aleatoire τ∼exp βΔF[F o +ΔF)=log a Σexp(−βF a )","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"2000 1","pages":"463-466"},"PeriodicalIF":0.0000,"publicationDate":"1985-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Stretched exponential relaxation in systems with random free energies\",\"authors\":\"C. Dominicis, H. Orland, F. Lainée\",\"doi\":\"10.1051/JPHYSLET:019850046011046300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spin glass phase is characterized by a large number of quasi degenerate states (or walley bottoms). Their free energies F a =F o +f a , where f a is a non extensive fluctuation, have recently been shown to be random independent variables, as in Derrida's model. Relaxation to equilibrium of such systems is considered and a simple approximation to the transition probability (in the master equation) is considered that leads to a (random) relaxation time τ∼expβΔF with −β(F o +ΔF)= In a Σexp(−βF a ). The ensuing relaxation to equilibrium is shown to be a stretched exponential a behaviour common to a wide class of materials. The dependence of the result on the particular choice of the transition probability is touched upon Etude des verres de spin, caracterises par un grand nombre d'etats (ou fonds de vallees) quasi degeneres, d'energies libres F a =F o +f a (ou fa est une fluctuation non extensive) se comportant en variables aleatoires independantes comme dans le modele de Derrida. Analyse de la relaxation vers l'equilibre a l'aide d'une approximation simple pour la probabilite de transition (dans l'equation maitresse) qui conduit a un temps de relaxation aleatoire τ∼exp βΔF[F o +ΔF)=log a Σexp(−βF a )\",\"PeriodicalId\":14822,\"journal\":{\"name\":\"Journal De Physique Lettres\",\"volume\":\"2000 1\",\"pages\":\"463-466\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique Lettres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYSLET:019850046011046300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:019850046011046300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

自旋玻璃相具有大量的准简并态(或瓦利底)。它们的自由能F =F o + F a,其中F a是一个非广泛的波动,最近被证明是随机的独立变量,就像德里达的模型一样。考虑了这类系统的平衡松弛,并考虑了转移概率(在主方程中)的简单近似,该近似导致(随机)松弛时间τ ~ expβΔF,其中−β(F o +ΔF)= in a Σexp(−βF a)。随后的松弛达到平衡被证明是一种被拉伸的指数行为,这是一种广泛的材料所共有的行为。结果对特定选择跃迁概率的依赖性涉及到Etude des verres de spin,特征parun grand nombre d'etats (ou fonds de vallees)准简并,d'energies libres F a =F o + F a (ou faest unextensive涨落),重要的两个变量是独立的,独立的comme dans le modele de Derrida。分析l'平衡和l'aide ' d'une近似的de la弛豫概率跃迁(dans l'equation maitresse) -管道和untemps de弛豫微分τ ~ exp βΔF[F o +ΔF)=log a Σexp(- βF a)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stretched exponential relaxation in systems with random free energies
A spin glass phase is characterized by a large number of quasi degenerate states (or walley bottoms). Their free energies F a =F o +f a , where f a is a non extensive fluctuation, have recently been shown to be random independent variables, as in Derrida's model. Relaxation to equilibrium of such systems is considered and a simple approximation to the transition probability (in the master equation) is considered that leads to a (random) relaxation time τ∼expβΔF with −β(F o +ΔF)= In a Σexp(−βF a ). The ensuing relaxation to equilibrium is shown to be a stretched exponential a behaviour common to a wide class of materials. The dependence of the result on the particular choice of the transition probability is touched upon Etude des verres de spin, caracterises par un grand nombre d'etats (ou fonds de vallees) quasi degeneres, d'energies libres F a =F o +f a (ou fa est une fluctuation non extensive) se comportant en variables aleatoires independantes comme dans le modele de Derrida. Analyse de la relaxation vers l'equilibre a l'aide d'une approximation simple pour la probabilite de transition (dans l'equation maitresse) qui conduit a un temps de relaxation aleatoire τ∼exp βΔF[F o +ΔF)=log a Σexp(−βF a )
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信