Christopher Henard, Mike Papadakis, M. Harman, Yue Jia, Yves Le Traon
{"title":"白盒和黑盒测试优先级的比较","authors":"Christopher Henard, Mike Papadakis, M. Harman, Yue Jia, Yves Le Traon","doi":"10.1145/2884781.2884791","DOIUrl":null,"url":null,"abstract":"Although white-box regression test prioritization has been well-studied, the more recently introduced black-box prioritization approaches have neither been compared against each other nor against more well-established white-box techniques. We present a comprehensive experimental comparison of several test prioritization techniques, including well-established white-box strategies and more recently introduced black-box approaches. We found that Combinatorial Interaction Testing and diversity-based techniques (Input Model Diversity and Input Test Set Diameter) perform best among the black-box approaches. Perhaps surprisingly, we found little difference between black-box and white-box performance (at most 4% fault detection rate difference). We also found the overlap between black- and white-box faults to be high: the first 10% of the prioritized test suites already agree on at least 60% of the faults found. These are positive findings for practicing regression testers who may not have source code available, thereby making white-box techniques inapplicable. We also found evidence that both black-box and white-box prioritization remain robust over multiple system releases.","PeriodicalId":6485,"journal":{"name":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","volume":"15 1","pages":"523-534"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"167","resultStr":"{\"title\":\"Comparing White-Box and Black-Box Test Prioritization\",\"authors\":\"Christopher Henard, Mike Papadakis, M. Harman, Yue Jia, Yves Le Traon\",\"doi\":\"10.1145/2884781.2884791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although white-box regression test prioritization has been well-studied, the more recently introduced black-box prioritization approaches have neither been compared against each other nor against more well-established white-box techniques. We present a comprehensive experimental comparison of several test prioritization techniques, including well-established white-box strategies and more recently introduced black-box approaches. We found that Combinatorial Interaction Testing and diversity-based techniques (Input Model Diversity and Input Test Set Diameter) perform best among the black-box approaches. Perhaps surprisingly, we found little difference between black-box and white-box performance (at most 4% fault detection rate difference). We also found the overlap between black- and white-box faults to be high: the first 10% of the prioritized test suites already agree on at least 60% of the faults found. These are positive findings for practicing regression testers who may not have source code available, thereby making white-box techniques inapplicable. We also found evidence that both black-box and white-box prioritization remain robust over multiple system releases.\",\"PeriodicalId\":6485,\"journal\":{\"name\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"volume\":\"15 1\",\"pages\":\"523-534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"167\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2884781.2884791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2884781.2884791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing White-Box and Black-Box Test Prioritization
Although white-box regression test prioritization has been well-studied, the more recently introduced black-box prioritization approaches have neither been compared against each other nor against more well-established white-box techniques. We present a comprehensive experimental comparison of several test prioritization techniques, including well-established white-box strategies and more recently introduced black-box approaches. We found that Combinatorial Interaction Testing and diversity-based techniques (Input Model Diversity and Input Test Set Diameter) perform best among the black-box approaches. Perhaps surprisingly, we found little difference between black-box and white-box performance (at most 4% fault detection rate difference). We also found the overlap between black- and white-box faults to be high: the first 10% of the prioritized test suites already agree on at least 60% of the faults found. These are positive findings for practicing regression testers who may not have source code available, thereby making white-box techniques inapplicable. We also found evidence that both black-box and white-box prioritization remain robust over multiple system releases.