提高付费和非付费广告的社交媒体参与度:一种数据挖掘方法

Q4 Mathematics
Jen-peng Huang, Genesis Sembiring Depari
{"title":"提高付费和非付费广告的社交媒体参与度:一种数据挖掘方法","authors":"Jen-peng Huang, Genesis Sembiring Depari","doi":"10.1504/IJDATS.2021.114668","DOIUrl":null,"url":null,"abstract":": The purpose of this research is to develop a strategy to improve the number of social media engagement on Facebook both for paid and non-paid publications through a data mining approach. Several Facebook post characteristics were weighted in order to rank the input variables importance. Three machine learning algorithms performance along with dynamic parameters were compared in order to obtain a robust algorithm in assessing the importance of several input factors. Random forest is found as the most powerful algorithm with 79% accuracy and therefore used to analyse the importance of input factors in order to improve the number of engagements of social media posts. Eventually, total page likes (number of page follower) of a company Facebook page are found as the most important factor in order to have more social media engagements both for paid and non-paid publications. We also propose a managerial implication on how to improve the number of engagements in company social media.","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"46 1","pages":"88-106"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving social media engagements on paid and non-paid advertisements: a data mining approach\",\"authors\":\"Jen-peng Huang, Genesis Sembiring Depari\",\"doi\":\"10.1504/IJDATS.2021.114668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The purpose of this research is to develop a strategy to improve the number of social media engagement on Facebook both for paid and non-paid publications through a data mining approach. Several Facebook post characteristics were weighted in order to rank the input variables importance. Three machine learning algorithms performance along with dynamic parameters were compared in order to obtain a robust algorithm in assessing the importance of several input factors. Random forest is found as the most powerful algorithm with 79% accuracy and therefore used to analyse the importance of input factors in order to improve the number of engagements of social media posts. Eventually, total page likes (number of page follower) of a company Facebook page are found as the most important factor in order to have more social media engagements both for paid and non-paid publications. We also propose a managerial implication on how to improve the number of engagements in company social media.\",\"PeriodicalId\":38582,\"journal\":{\"name\":\"International Journal of Data Analysis Techniques and Strategies\",\"volume\":\"46 1\",\"pages\":\"88-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Analysis Techniques and Strategies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDATS.2021.114668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJDATS.2021.114668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是制定一项策略,通过数据挖掘方法提高Facebook上付费和非付费出版物的社交媒体参与度。对几个Facebook帖子特征进行加权,以便对输入变量的重要性进行排序。比较了三种机器学习算法在动态参数下的性能,获得了一种鲁棒的算法来评估多个输入因素的重要性。随机森林被认为是最强大的算法,准确率为79%,因此用于分析输入因素的重要性,以提高社交媒体帖子的参与度。最终,公司Facebook页面的总页面赞数(页面关注者数量)被认为是提高付费和非付费出版物社交媒体参与度的最重要因素。我们还就如何提高公司社交媒体的参与数量提出了管理意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving social media engagements on paid and non-paid advertisements: a data mining approach
: The purpose of this research is to develop a strategy to improve the number of social media engagement on Facebook both for paid and non-paid publications through a data mining approach. Several Facebook post characteristics were weighted in order to rank the input variables importance. Three machine learning algorithms performance along with dynamic parameters were compared in order to obtain a robust algorithm in assessing the importance of several input factors. Random forest is found as the most powerful algorithm with 79% accuracy and therefore used to analyse the importance of input factors in order to improve the number of engagements of social media posts. Eventually, total page likes (number of page follower) of a company Facebook page are found as the most important factor in order to have more social media engagements both for paid and non-paid publications. We also propose a managerial implication on how to improve the number of engagements in company social media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Analysis Techniques and Strategies
International Journal of Data Analysis Techniques and Strategies Decision Sciences-Information Systems and Management
CiteScore
1.20
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信