{"title":"不完全剩余域情况下的Hodge-tate和de rham表示","authors":"K. Morita","doi":"10.24033/ASENS.2122","DOIUrl":null,"url":null,"abstract":"Soit K un corps local p-adique de corps residuel k tel que [k: k P ] = p e < +∞ et soit V une representation p-adique de Gal(K/K). Nous utilisons la theorie des modules differentiels p-adiques pour montrer que V est une representation de Hodge-Tate (resp. de Rham) de Gal(K/K) si et seulement si V est une representation de Hodge-Tate (resp. de Rham) de Gal(k pf /k pf ) ou K pf /K est un certain corps local p-adique de corps residuel le plus petit corps parfait k pf contenant k.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"6 1","pages":"341-355"},"PeriodicalIF":1.3000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"HODGE-TATE AND DE RHAM REPRESENTATIONS IN THE IMPERFECT RESIDUE FIELD CASE\",\"authors\":\"K. Morita\",\"doi\":\"10.24033/ASENS.2122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soit K un corps local p-adique de corps residuel k tel que [k: k P ] = p e < +∞ et soit V une representation p-adique de Gal(K/K). Nous utilisons la theorie des modules differentiels p-adiques pour montrer que V est une representation de Hodge-Tate (resp. de Rham) de Gal(K/K) si et seulement si V est une representation de Hodge-Tate (resp. de Rham) de Gal(k pf /k pf ) ou K pf /K est un certain corps local p-adique de corps residuel le plus petit corps parfait k pf contenant k.\",\"PeriodicalId\":50971,\"journal\":{\"name\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"volume\":\"6 1\",\"pages\":\"341-355\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ASENS.2122\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ASENS.2122","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9
摘要
设K是残场K的局部P - adic域,使[K: K P] = P e < +∞,设V是Gal(K/K)的P - adic表示。我们利用p- adic微分模理论证明V是Hodge-Tate的表示。当且仅当V是Hodge-Tate的表示时,Gal(K/K)。Gal(k pf /k pf)或k pf /k是一个局部p- adic残体最小的完美体k pf包含k。
HODGE-TATE AND DE RHAM REPRESENTATIONS IN THE IMPERFECT RESIDUE FIELD CASE
Soit K un corps local p-adique de corps residuel k tel que [k: k P ] = p e < +∞ et soit V une representation p-adique de Gal(K/K). Nous utilisons la theorie des modules differentiels p-adiques pour montrer que V est une representation de Hodge-Tate (resp. de Rham) de Gal(K/K) si et seulement si V est une representation de Hodge-Tate (resp. de Rham) de Gal(k pf /k pf ) ou K pf /K est un certain corps local p-adique de corps residuel le plus petit corps parfait k pf contenant k.
期刊介绍:
The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics.
Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition.
The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.