{"title":"非正曲率度量空间中仿射非扩张映射的平均遍历定理","authors":"H. Khatibzadeh, Hadi Pouladi","doi":"10.2478/auom-2021-0008","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider the orbits of an affine nonexpansive mapping in Hadamard (nonpositive curvature metric) spaces and prove an ergodic theorem for the inductive mean, which extends the von Neumann linear ergodic theorem. The main result shows that the sequence given by the inductive means of iterations of an affine nonexpansive mapping with a nonempty fixed point set converges strongly to a fixed point of the mapping. A Tauberian theorem is also proved in order to ensure convergence of the iterations.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"145 1","pages":"111 - 125"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mean Ergodic Theorem for Affine Nonexpansive Mappings in Nonpositive Curvature Metric Spaces\",\"authors\":\"H. Khatibzadeh, Hadi Pouladi\",\"doi\":\"10.2478/auom-2021-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider the orbits of an affine nonexpansive mapping in Hadamard (nonpositive curvature metric) spaces and prove an ergodic theorem for the inductive mean, which extends the von Neumann linear ergodic theorem. The main result shows that the sequence given by the inductive means of iterations of an affine nonexpansive mapping with a nonempty fixed point set converges strongly to a fixed point of the mapping. A Tauberian theorem is also proved in order to ensure convergence of the iterations.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"145 1\",\"pages\":\"111 - 125\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Mean Ergodic Theorem for Affine Nonexpansive Mappings in Nonpositive Curvature Metric Spaces
Abstract In this paper, we consider the orbits of an affine nonexpansive mapping in Hadamard (nonpositive curvature metric) spaces and prove an ergodic theorem for the inductive mean, which extends the von Neumann linear ergodic theorem. The main result shows that the sequence given by the inductive means of iterations of an affine nonexpansive mapping with a nonempty fixed point set converges strongly to a fixed point of the mapping. A Tauberian theorem is also proved in order to ensure convergence of the iterations.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.