我在哪里可以买到巨石?:搜索线下零售地点

Sandro Bauer, Filip Radlinski, Ryen W. White
{"title":"我在哪里可以买到巨石?:搜索线下零售地点","authors":"Sandro Bauer, Filip Radlinski, Ryen W. White","doi":"10.1145/2872427.2882998","DOIUrl":null,"url":null,"abstract":"People commonly need to purchase things in person, from large garden supplies to home decor. Although modern search systems are very effective at finding online products, little research attention has been paid to helping users find places that sell a specific product offline. For instance, users searching for an apron are not typically directed to a nearby kitchen store by a standard search engine. In this paper, we investigate \"where can I buy\"-style queries related to in-person purchases of products and services. Answering these queries is challenging since little is known about the range of products sold in many stores, especially those which are smaller in size. To better understand this class of queries, we first present an in-depth analysis of typical offline purchase needs as observed by a major search engine, producing an ontology of such needs. We then propose ranking features for this new problem, and learn a ranking function that returns stores most likely to sell a queried item or service, even if there is very little information available online about some of the stores. Our final contribution is a new evaluation framework that combines distance with store relevance in measuring the effectiveness of such a search system. We evaluate our method using this approach and show that it outperforms a modern web search engine.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Where Can I Buy a Boulder?: Searching for Offline Retail Locations\",\"authors\":\"Sandro Bauer, Filip Radlinski, Ryen W. White\",\"doi\":\"10.1145/2872427.2882998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People commonly need to purchase things in person, from large garden supplies to home decor. Although modern search systems are very effective at finding online products, little research attention has been paid to helping users find places that sell a specific product offline. For instance, users searching for an apron are not typically directed to a nearby kitchen store by a standard search engine. In this paper, we investigate \\\"where can I buy\\\"-style queries related to in-person purchases of products and services. Answering these queries is challenging since little is known about the range of products sold in many stores, especially those which are smaller in size. To better understand this class of queries, we first present an in-depth analysis of typical offline purchase needs as observed by a major search engine, producing an ontology of such needs. We then propose ranking features for this new problem, and learn a ranking function that returns stores most likely to sell a queried item or service, even if there is very little information available online about some of the stores. Our final contribution is a new evaluation framework that combines distance with store relevance in measuring the effectiveness of such a search system. We evaluate our method using this approach and show that it outperforms a modern web search engine.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2882998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2882998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人们通常需要亲自购买物品,从大型园艺用品到家居装饰。尽管现代搜索系统在寻找在线产品方面非常有效,但很少有研究关注如何帮助用户找到线下销售特定产品的地方。例如,搜索围裙的用户通常不会被标准搜索引擎引导到附近的厨房商店。在本文中,我们研究了与亲自购买产品和服务相关的“我可以在哪里购买”式查询。回答这些问题是具有挑战性的,因为人们对许多商店出售的产品范围知之甚少,尤其是那些尺寸较小的产品。为了更好地理解这类查询,我们首先对一个主要搜索引擎观察到的典型离线购买需求进行了深入分析,生成了这类需求的本体。然后,我们为这个新问题提出了排名特性,并学习了一个排名函数,该函数返回最有可能出售所查询的商品或服务的商店,即使关于某些商店的在线信息很少。我们最后的贡献是一个新的评估框架,它结合了距离和商店相关性来衡量这样一个搜索系统的有效性。我们使用这种方法评估我们的方法,并表明它优于现代网络搜索引擎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Where Can I Buy a Boulder?: Searching for Offline Retail Locations
People commonly need to purchase things in person, from large garden supplies to home decor. Although modern search systems are very effective at finding online products, little research attention has been paid to helping users find places that sell a specific product offline. For instance, users searching for an apron are not typically directed to a nearby kitchen store by a standard search engine. In this paper, we investigate "where can I buy"-style queries related to in-person purchases of products and services. Answering these queries is challenging since little is known about the range of products sold in many stores, especially those which are smaller in size. To better understand this class of queries, we first present an in-depth analysis of typical offline purchase needs as observed by a major search engine, producing an ontology of such needs. We then propose ranking features for this new problem, and learn a ranking function that returns stores most likely to sell a queried item or service, even if there is very little information available online about some of the stores. Our final contribution is a new evaluation framework that combines distance with store relevance in measuring the effectiveness of such a search system. We evaluate our method using this approach and show that it outperforms a modern web search engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信