{"title":"虚二次数环中丢番图m元组的大小","authors":"Nikola Advzaga","doi":"10.1142/S1664360719500206","DOIUrl":null,"url":null,"abstract":"A Diophantine [Formula: see text]-tuple is a set of [Formula: see text] distinct integers such that the product of any two distinct elements plus one is a perfect square. It was recently proven that there is no Diophantine quintuple in positive integers. We study the same problem in the rings of integers of imaginary quadratic fields. By using a gap principle proven by Diophantine approximations, we show that [Formula: see text]. Our proof is relatively simple compared to the proofs of similar results in positive integers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the size of Diophantine m-tuples in imaginary quadratic number rings\",\"authors\":\"Nikola Advzaga\",\"doi\":\"10.1142/S1664360719500206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Diophantine [Formula: see text]-tuple is a set of [Formula: see text] distinct integers such that the product of any two distinct elements plus one is a perfect square. It was recently proven that there is no Diophantine quintuple in positive integers. We study the same problem in the rings of integers of imaginary quadratic fields. By using a gap principle proven by Diophantine approximations, we show that [Formula: see text]. Our proof is relatively simple compared to the proofs of similar results in positive integers.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S1664360719500206\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S1664360719500206","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the size of Diophantine m-tuples in imaginary quadratic number rings
A Diophantine [Formula: see text]-tuple is a set of [Formula: see text] distinct integers such that the product of any two distinct elements plus one is a perfect square. It was recently proven that there is no Diophantine quintuple in positive integers. We study the same problem in the rings of integers of imaginary quadratic fields. By using a gap principle proven by Diophantine approximations, we show that [Formula: see text]. Our proof is relatively simple compared to the proofs of similar results in positive integers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.