符号计算机代数在算术电路验证中的应用

Yuki Watanabe, N. Homma, T. Aoki, T. Higuchi
{"title":"符号计算机代数在算术电路验证中的应用","authors":"Yuki Watanabe, N. Homma, T. Aoki, T. Higuchi","doi":"10.1109/ICCD.2007.4601876","DOIUrl":null,"url":null,"abstract":"This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Grobner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits where the conventional techniques failed.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"32 1","pages":"25-32"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Application of symbolic computer algebra to arithmetic circuit verification\",\"authors\":\"Yuki Watanabe, N. Homma, T. Aoki, T. Higuchi\",\"doi\":\"10.1109/ICCD.2007.4601876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Grobner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits where the conventional techniques failed.\",\"PeriodicalId\":6306,\"journal\":{\"name\":\"2007 25th International Conference on Computer Design\",\"volume\":\"32 1\",\"pages\":\"25-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 25th International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2007.4601876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文提出了一种用符号计算机代数验证算术电路的形式化方法。该方法基于加权数系统和算术公式,直接用高级数学对象描述算术电路。利用Grobner基的多项式约简技术可以有效地验证这种电路描述。在本文中,我们描述了如何使用符号计算机代数来描述和验证算术电路。通过对乘加器和FIR滤波器等算术电路的实验验证,证明了该方法的优越性。结果表明,该方法具有一定的可行性,可用于验证传统方法无法实现的实际算法电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of symbolic computer algebra to arithmetic circuit verification
This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Grobner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits where the conventional techniques failed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信