不相容有界范畴强迫公理

IF 0.9 1区 数学 Q1 LOGIC
D. Asperó, M. Viale
{"title":"不相容有界范畴强迫公理","authors":"D. Asperó, M. Viale","doi":"10.1142/s0219061322500064","DOIUrl":null,"url":null,"abstract":"We introduce bounded category forcing axioms for well-behaved classes [Formula: see text]. These are strong forms of bounded forcing axioms which completely decide the theory of some initial segment of the universe [Formula: see text] modulo forcing in [Formula: see text], for some cardinal [Formula: see text] naturally associated to [Formula: see text]. These axioms naturally extend projective absoluteness for arbitrary set-forcing — in this situation [Formula: see text] — to classes [Formula: see text] with [Formula: see text]. Unlike projective absoluteness, these higher bounded category forcing axioms do not follow from large cardinal axioms but can be forced under mild large cardinal assumptions on [Formula: see text]. We also show the existence of many classes [Formula: see text] with [Formula: see text] giving rise to pairwise incompatible theories for [Formula: see text].","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"8 1","pages":"2250006:1-2250006:76"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Incompatible bounded category forcing axioms\",\"authors\":\"D. Asperó, M. Viale\",\"doi\":\"10.1142/s0219061322500064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce bounded category forcing axioms for well-behaved classes [Formula: see text]. These are strong forms of bounded forcing axioms which completely decide the theory of some initial segment of the universe [Formula: see text] modulo forcing in [Formula: see text], for some cardinal [Formula: see text] naturally associated to [Formula: see text]. These axioms naturally extend projective absoluteness for arbitrary set-forcing — in this situation [Formula: see text] — to classes [Formula: see text] with [Formula: see text]. Unlike projective absoluteness, these higher bounded category forcing axioms do not follow from large cardinal axioms but can be forced under mild large cardinal assumptions on [Formula: see text]. We also show the existence of many classes [Formula: see text] with [Formula: see text] giving rise to pairwise incompatible theories for [Formula: see text].\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"8 1\",\"pages\":\"2250006:1-2250006:76\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219061322500064\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061322500064","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 4

摘要

我们为表现良好的类引入有界范畴强制公理[公式:见文本]。这些是有界强迫公理的强大形式,它们完全决定了宇宙某些初始部分的理论[公式:见文]中的模强迫,对于一些基数[公式:见文]自然地与[公式:见文]相关联。这些公理自然地将任意集合强制的射影绝对性——在这种情况下[公式:见文]——扩展到具有[公式:见文]的类[公式:见文]。与射影绝对性不同,这些高有界范畴强制公理不遵循大基数公理,但可以在温和的大基数假设下强制[公式:见文本]。我们还证明了许多类的存在[公式:见文],而[公式:见文]产生了[公式:见文]的成对不相容理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incompatible bounded category forcing axioms
We introduce bounded category forcing axioms for well-behaved classes [Formula: see text]. These are strong forms of bounded forcing axioms which completely decide the theory of some initial segment of the universe [Formula: see text] modulo forcing in [Formula: see text], for some cardinal [Formula: see text] naturally associated to [Formula: see text]. These axioms naturally extend projective absoluteness for arbitrary set-forcing — in this situation [Formula: see text] — to classes [Formula: see text] with [Formula: see text]. Unlike projective absoluteness, these higher bounded category forcing axioms do not follow from large cardinal axioms but can be forced under mild large cardinal assumptions on [Formula: see text]. We also show the existence of many classes [Formula: see text] with [Formula: see text] giving rise to pairwise incompatible theories for [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信