hx - group和hypergroup之间的链路

IF 0.4 4区 数学 Q4 MATHEMATICS
I. Cristea, M. Novák, B. Onasanya
{"title":"hx - group和hypergroup之间的链路","authors":"I. Cristea, M. Novák, B. Onasanya","doi":"10.1142/s1005386721000341","DOIUrl":null,"url":null,"abstract":"The concept of an [Formula: see text]-group is an upgrade of the concept of a group, in which a new operation is defined on the family of non-empty subsets of a group. If this new support set together with the new operation is a group, then we call it an [Formula: see text]-group. On the other hand, a hyperoperation is a mapping having the same codomain as the operation of an [Formula: see text]-group, i.e., the family of non-empty subsets of the initial set, but a different domain — the set itself. This could be (and was indeed) a source of confusion, which is clarified in this paper. Moreover, [Formula: see text]-groups naturally lead to constructions of hypergroups. The links between these two algebraic concepts are presented, with the aim of reviving the old notion of an [Formula: see text]-group in the current research on algebraic hyperstructures. One of such existing links and one newly established link are also discussed.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"77 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Links Between HX-Groups and Hypergroups\",\"authors\":\"I. Cristea, M. Novák, B. Onasanya\",\"doi\":\"10.1142/s1005386721000341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of an [Formula: see text]-group is an upgrade of the concept of a group, in which a new operation is defined on the family of non-empty subsets of a group. If this new support set together with the new operation is a group, then we call it an [Formula: see text]-group. On the other hand, a hyperoperation is a mapping having the same codomain as the operation of an [Formula: see text]-group, i.e., the family of non-empty subsets of the initial set, but a different domain — the set itself. This could be (and was indeed) a source of confusion, which is clarified in this paper. Moreover, [Formula: see text]-groups naturally lead to constructions of hypergroups. The links between these two algebraic concepts are presented, with the aim of reviving the old notion of an [Formula: see text]-group in the current research on algebraic hyperstructures. One of such existing links and one newly established link are also discussed.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386721000341\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386721000341","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

群的概念是对群概念的升级,在群的非空子集族上定义了一个新的运算。如果这个新的支持集和新的操作是一个组,那么我们称它为[公式:见文本]-组。另一方面,超运算是一种映射,它与一个[公式:见文本]群的运算具有相同的上域,即初始集合的非空子集族,但具有不同的域-集合本身。这可能是(而且确实是)混淆的根源,本文对此进行了澄清。此外,[公式:见文本]群自然导致超群的构造。提出了这两个代数概念之间的联系,目的是在当前代数超结构的研究中复兴一个[公式:见文本]群的旧概念。并对其中一个现有环节和一个新建立的环节进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Links Between HX-Groups and Hypergroups
The concept of an [Formula: see text]-group is an upgrade of the concept of a group, in which a new operation is defined on the family of non-empty subsets of a group. If this new support set together with the new operation is a group, then we call it an [Formula: see text]-group. On the other hand, a hyperoperation is a mapping having the same codomain as the operation of an [Formula: see text]-group, i.e., the family of non-empty subsets of the initial set, but a different domain — the set itself. This could be (and was indeed) a source of confusion, which is clarified in this paper. Moreover, [Formula: see text]-groups naturally lead to constructions of hypergroups. The links between these two algebraic concepts are presented, with the aim of reviving the old notion of an [Formula: see text]-group in the current research on algebraic hyperstructures. One of such existing links and one newly established link are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信