一种平面电渗透微泵

Chuan-Hua Chen, J. Santiago
{"title":"一种平面电渗透微泵","authors":"Chuan-Hua Chen, J. Santiago","doi":"10.1109/JMEMS.2002.805055","DOIUrl":null,"url":null,"abstract":"Electroosmotic (EO) micropumps use field-induced ion drag to drive liquids and achieve high pressures in a compact design with no moving parts. An analytical model applicable to planar, etched-structure micropumps has been developed. This model consists of pressure and flow relations in addition to an analytical expression that can be used to estimate the thermodynamic efficiency of planar EO pumps. The analytical model was applied to guide the design of a pump consisting of an etched EO flow chamber for near-optimal hydraulic power performance. To achieve high efficiency, the working fluid used was deionized (DI) water with a conductivity of 3.0 /spl times/ 10/sup -4/ S/m (pH = 5.7). The EO micropump was fabricated on a soda-lime glass substrate using standard microlithography and chemical wet etching techniques. The active pumping volume of the device consists of a wet-etched flow channel 1-mm long in the flow direction and 0.9 /spl mu/m by 38-mm in cross section. The pump performance agrees well with the theoretical model. The pump can produce a maximum pressure of 0.33 atm and a maximum flow rate of 15 /spl mu/L/min min at 1 kV.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"282","resultStr":"{\"title\":\"A planar electroosmotic micropump\",\"authors\":\"Chuan-Hua Chen, J. Santiago\",\"doi\":\"10.1109/JMEMS.2002.805055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroosmotic (EO) micropumps use field-induced ion drag to drive liquids and achieve high pressures in a compact design with no moving parts. An analytical model applicable to planar, etched-structure micropumps has been developed. This model consists of pressure and flow relations in addition to an analytical expression that can be used to estimate the thermodynamic efficiency of planar EO pumps. The analytical model was applied to guide the design of a pump consisting of an etched EO flow chamber for near-optimal hydraulic power performance. To achieve high efficiency, the working fluid used was deionized (DI) water with a conductivity of 3.0 /spl times/ 10/sup -4/ S/m (pH = 5.7). The EO micropump was fabricated on a soda-lime glass substrate using standard microlithography and chemical wet etching techniques. The active pumping volume of the device consists of a wet-etched flow channel 1-mm long in the flow direction and 0.9 /spl mu/m by 38-mm in cross section. The pump performance agrees well with the theoretical model. The pump can produce a maximum pressure of 0.33 atm and a maximum flow rate of 15 /spl mu/L/min min at 1 kV.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"282\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2002.805055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2002.805055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 282

摘要

电渗透(EO)微泵利用场致离子阻力驱动液体,并在紧凑的设计中实现高压,没有移动部件。建立了一种适用于平面蚀刻结构微泵的解析模型。该模型包括压力和流量关系,以及可用于估计平面电磁泵热力学效率的解析表达式。应用该分析模型指导了由蚀刻EO流室组成的泵的设计,以获得接近最佳的水力性能。为了获得较高的效率,工作液采用电导率为3.0 /spl倍/ 10/sup -4/ S/m (pH = 5.7)的去离子水(DI)。采用标准微光刻技术和化学湿法蚀刻技术在钠石灰玻璃基板上制备了EO微泵。该装置的主动泵送容积由一个流方向长1mm、横截面为0.9 /spl mu/m × 38mm的湿蚀刻流道组成。泵的性能与理论模型吻合较好。该泵在1kv时可产生0.33 atm的最大压力,15 /spl mu/L/min min的最大流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A planar electroosmotic micropump
Electroosmotic (EO) micropumps use field-induced ion drag to drive liquids and achieve high pressures in a compact design with no moving parts. An analytical model applicable to planar, etched-structure micropumps has been developed. This model consists of pressure and flow relations in addition to an analytical expression that can be used to estimate the thermodynamic efficiency of planar EO pumps. The analytical model was applied to guide the design of a pump consisting of an etched EO flow chamber for near-optimal hydraulic power performance. To achieve high efficiency, the working fluid used was deionized (DI) water with a conductivity of 3.0 /spl times/ 10/sup -4/ S/m (pH = 5.7). The EO micropump was fabricated on a soda-lime glass substrate using standard microlithography and chemical wet etching techniques. The active pumping volume of the device consists of a wet-etched flow channel 1-mm long in the flow direction and 0.9 /spl mu/m by 38-mm in cross section. The pump performance agrees well with the theoretical model. The pump can produce a maximum pressure of 0.33 atm and a maximum flow rate of 15 /spl mu/L/min min at 1 kV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信