脂质生物合成蛋白家族及磷脂结构变异分析。

Michihiro Tanaka, Yuki Moriya, S. Goto, M. Kanehisa
{"title":"脂质生物合成蛋白家族及磷脂结构变异分析。","authors":"Michihiro Tanaka, Yuki Moriya, S. Goto, M. Kanehisa","doi":"10.1142/9781848165786_0016","DOIUrl":null,"url":null,"abstract":"Glycerophospholipids are major structural lipids in cellular membrane systems and play key roles as suppliers of the first and second messengers in the signal transduction and molecular recognition processes. The distribution of lipid components differs among organelles and cells. The distribution is controlled by two pathways in lipid metabolism: de nova and remodeling pathways. Glycerophospholipids including arachidonic and stearic acids are mostly produced in the remodeling pathway, whereas lipid chains are reconstructed from those synthesized in the de novo pathway. Recently lysophospholipid acyltransferases have been isolated as key enzymes in the remodeling pathway, and the substrate specificity has been investigated in terms of the chemical substructures of glycerophospholipids, such as the type of head groups and the length of aliphatic chains. These experimental studies have been reported for specific organisms, and only two representative sequence motifs are known for acyltransferases: a general pattern and the pattern for membrane-bound O-acyltransferase (MBOAT). Here we attempt to correlate the sequence patterns and the substrate specificity of lysophospholipid acyltransferases in 89 eukaryotic genomes in order to understand the roles of this enzyme family and underlying glycerophospholipid structural variations. Using phylogenetic and domain analyses, the lysophospholipid acyltransferase family was divided into 18 subtypes. Furthermore, we examined the occurrence of identified subtypes in eukaryotic genomes, and found the expansion of these subtypes in vertebrates. These findings may provide clues to understanding structural variations and distributions of glycerophospholipids in different organisms.","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of a lipid biosynthesis protein family and phospholipid structural variations.\",\"authors\":\"Michihiro Tanaka, Yuki Moriya, S. Goto, M. Kanehisa\",\"doi\":\"10.1142/9781848165786_0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glycerophospholipids are major structural lipids in cellular membrane systems and play key roles as suppliers of the first and second messengers in the signal transduction and molecular recognition processes. The distribution of lipid components differs among organelles and cells. The distribution is controlled by two pathways in lipid metabolism: de nova and remodeling pathways. Glycerophospholipids including arachidonic and stearic acids are mostly produced in the remodeling pathway, whereas lipid chains are reconstructed from those synthesized in the de novo pathway. Recently lysophospholipid acyltransferases have been isolated as key enzymes in the remodeling pathway, and the substrate specificity has been investigated in terms of the chemical substructures of glycerophospholipids, such as the type of head groups and the length of aliphatic chains. These experimental studies have been reported for specific organisms, and only two representative sequence motifs are known for acyltransferases: a general pattern and the pattern for membrane-bound O-acyltransferase (MBOAT). Here we attempt to correlate the sequence patterns and the substrate specificity of lysophospholipid acyltransferases in 89 eukaryotic genomes in order to understand the roles of this enzyme family and underlying glycerophospholipid structural variations. Using phylogenetic and domain analyses, the lysophospholipid acyltransferase family was divided into 18 subtypes. Furthermore, we examined the occurrence of identified subtypes in eukaryotic genomes, and found the expansion of these subtypes in vertebrates. These findings may provide clues to understanding structural variations and distributions of glycerophospholipids in different organisms.\",\"PeriodicalId\":73143,\"journal\":{\"name\":\"Genome informatics. International Conference on Genome Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome informatics. International Conference on Genome Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781848165786_0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848165786_0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

甘油磷脂是细胞膜系统中主要的结构脂类,在信号转导和分子识别过程中作为第一和第二信使的提供者发挥着关键作用。脂质成分在细胞器和细胞中的分布是不同的。其分布受脂质代谢的两条途径控制:新生途径和重塑途径。包括花生四烯酸和硬脂酸在内的甘油磷脂主要是在重塑途径中产生的,而脂链是在新生途径中合成的。近年来,溶血磷脂酰基转移酶已被分离出来作为重构途径中的关键酶,并根据甘油磷脂的化学亚结构(如头基团类型和脂肪链长度)研究了底物特异性。这些实验研究已经报道了特定生物体,只有两个代表性的序列基序是已知的酰基转移酶:一般模式和膜结合o -酰基转移酶(MBOAT)模式。在这里,我们试图将89个真核生物基因组中溶血磷脂酰基转移酶的序列模式和底物特异性联系起来,以了解该酶家族的作用和潜在的甘油磷脂结构变化。通过系统发育和结构域分析,将溶血磷脂酰基转移酶家族划分为18个亚型。此外,我们检查了真核生物基因组中已鉴定亚型的发生,并发现这些亚型在脊椎动物中扩展。这些发现可能为理解不同生物体中甘油磷脂的结构变化和分布提供线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a lipid biosynthesis protein family and phospholipid structural variations.
Glycerophospholipids are major structural lipids in cellular membrane systems and play key roles as suppliers of the first and second messengers in the signal transduction and molecular recognition processes. The distribution of lipid components differs among organelles and cells. The distribution is controlled by two pathways in lipid metabolism: de nova and remodeling pathways. Glycerophospholipids including arachidonic and stearic acids are mostly produced in the remodeling pathway, whereas lipid chains are reconstructed from those synthesized in the de novo pathway. Recently lysophospholipid acyltransferases have been isolated as key enzymes in the remodeling pathway, and the substrate specificity has been investigated in terms of the chemical substructures of glycerophospholipids, such as the type of head groups and the length of aliphatic chains. These experimental studies have been reported for specific organisms, and only two representative sequence motifs are known for acyltransferases: a general pattern and the pattern for membrane-bound O-acyltransferase (MBOAT). Here we attempt to correlate the sequence patterns and the substrate specificity of lysophospholipid acyltransferases in 89 eukaryotic genomes in order to understand the roles of this enzyme family and underlying glycerophospholipid structural variations. Using phylogenetic and domain analyses, the lysophospholipid acyltransferase family was divided into 18 subtypes. Furthermore, we examined the occurrence of identified subtypes in eukaryotic genomes, and found the expansion of these subtypes in vertebrates. These findings may provide clues to understanding structural variations and distributions of glycerophospholipids in different organisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信