{"title":"反映代数紧函子","authors":"Vladimir Zamdzhiev","doi":"10.4204/EPTCS.323.2","DOIUrl":null,"url":null,"abstract":"A compact T-algebra is an initial T-algebra whose inverse is a final T-coalgebra. Functors with this property are said to be algebraically compact. This is a very strong property used in programming semantics which allows one to interpret recursive datatypes involving mixed-variance functors, such as function space. The construction of compact algebras is usually done in categories with a zero object where some form of a limit-colimit coincidence exists. In this paper we consider a more abstract approach and show how one can construct compact algebras in categories which have neither a zero object, nor a (standard) limit-colimit coincidence by reflecting the compact algebras from categories which have both. In doing so, we provide a constructive description of a large class of algebraically compact functors (satisfying a compositionality principle) and show our methods compare quite favorably to other approaches from the literature.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reflecting Algebraically Compact Functors\",\"authors\":\"Vladimir Zamdzhiev\",\"doi\":\"10.4204/EPTCS.323.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact T-algebra is an initial T-algebra whose inverse is a final T-coalgebra. Functors with this property are said to be algebraically compact. This is a very strong property used in programming semantics which allows one to interpret recursive datatypes involving mixed-variance functors, such as function space. The construction of compact algebras is usually done in categories with a zero object where some form of a limit-colimit coincidence exists. In this paper we consider a more abstract approach and show how one can construct compact algebras in categories which have neither a zero object, nor a (standard) limit-colimit coincidence by reflecting the compact algebras from categories which have both. In doing so, we provide a constructive description of a large class of algebraically compact functors (satisfying a compositionality principle) and show our methods compare quite favorably to other approaches from the literature.\",\"PeriodicalId\":11810,\"journal\":{\"name\":\"essentia law Merchant Shipping Act 1995\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"essentia law Merchant Shipping Act 1995\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.323.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.323.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A compact T-algebra is an initial T-algebra whose inverse is a final T-coalgebra. Functors with this property are said to be algebraically compact. This is a very strong property used in programming semantics which allows one to interpret recursive datatypes involving mixed-variance functors, such as function space. The construction of compact algebras is usually done in categories with a zero object where some form of a limit-colimit coincidence exists. In this paper we consider a more abstract approach and show how one can construct compact algebras in categories which have neither a zero object, nor a (standard) limit-colimit coincidence by reflecting the compact algebras from categories which have both. In doing so, we provide a constructive description of a large class of algebraically compact functors (satisfying a compositionality principle) and show our methods compare quite favorably to other approaches from the literature.