{"title":"与Gegenbauer多项式联系的正则函数和双一元函数的系数界","authors":"S. R. Swamy, S. Yalçın","doi":"10.15393/j3.art.2022.10351","DOIUrl":null,"url":null,"abstract":". Making use of Gegenbauer polynomials, we initiate and explore two sets of normalized regular and bi-univalent (or bi-Schlicht) functions in D = { z ∈ C : | z | < 1 } linked with Gegenbauer polynomials. We investi-gate certain coefficients bounds and the Fekete-Szeg¨o functional for functions in these families. We also present few interesting observations and provide relevant connections of the results investigated.","PeriodicalId":41813,"journal":{"name":"Problemy Analiza-Issues of Analysis","volume":"9 3 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials\",\"authors\":\"S. R. Swamy, S. Yalçın\",\"doi\":\"10.15393/j3.art.2022.10351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Making use of Gegenbauer polynomials, we initiate and explore two sets of normalized regular and bi-univalent (or bi-Schlicht) functions in D = { z ∈ C : | z | < 1 } linked with Gegenbauer polynomials. We investi-gate certain coefficients bounds and the Fekete-Szeg¨o functional for functions in these families. We also present few interesting observations and provide relevant connections of the results investigated.\",\"PeriodicalId\":41813,\"journal\":{\"name\":\"Problemy Analiza-Issues of Analysis\",\"volume\":\"9 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemy Analiza-Issues of Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15393/j3.art.2022.10351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Analiza-Issues of Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15393/j3.art.2022.10351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
. 利用Gegenbauer多项式,我们探索了D = {z∈C: | z | < 1}中与Gegenbauer多项式连接的两组归一化正则双一元函数(或双schlicht)。我们研究了这些族中的函数的某些系数界和Fekete-Szeg¨o泛函。我们还提出了一些有趣的观察结果,并提供了所调查结果的相关联系。
Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials
. Making use of Gegenbauer polynomials, we initiate and explore two sets of normalized regular and bi-univalent (or bi-Schlicht) functions in D = { z ∈ C : | z | < 1 } linked with Gegenbauer polynomials. We investi-gate certain coefficients bounds and the Fekete-Szeg¨o functional for functions in these families. We also present few interesting observations and provide relevant connections of the results investigated.