与Gegenbauer多项式联系的正则函数和双一元函数的系数界

IF 0.5 Q3 MATHEMATICS
S. R. Swamy, S. Yalçın
{"title":"与Gegenbauer多项式联系的正则函数和双一元函数的系数界","authors":"S. R. Swamy, S. Yalçın","doi":"10.15393/j3.art.2022.10351","DOIUrl":null,"url":null,"abstract":". Making use of Gegenbauer polynomials, we initiate and explore two sets of normalized regular and bi-univalent (or bi-Schlicht) functions in D = { z ∈ C : | z | < 1 } linked with Gegenbauer polynomials. We investi-gate certain coefficients bounds and the Fekete-Szeg¨o functional for functions in these families. We also present few interesting observations and provide relevant connections of the results investigated.","PeriodicalId":41813,"journal":{"name":"Problemy Analiza-Issues of Analysis","volume":"9 3 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials\",\"authors\":\"S. R. Swamy, S. Yalçın\",\"doi\":\"10.15393/j3.art.2022.10351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Making use of Gegenbauer polynomials, we initiate and explore two sets of normalized regular and bi-univalent (or bi-Schlicht) functions in D = { z ∈ C : | z | < 1 } linked with Gegenbauer polynomials. We investi-gate certain coefficients bounds and the Fekete-Szeg¨o functional for functions in these families. We also present few interesting observations and provide relevant connections of the results investigated.\",\"PeriodicalId\":41813,\"journal\":{\"name\":\"Problemy Analiza-Issues of Analysis\",\"volume\":\"9 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemy Analiza-Issues of Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15393/j3.art.2022.10351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Analiza-Issues of Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15393/j3.art.2022.10351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

. 利用Gegenbauer多项式,我们探索了D = {z∈C: | z | < 1}中与Gegenbauer多项式连接的两组归一化正则双一元函数(或双schlicht)。我们研究了这些族中的函数的某些系数界和Fekete-Szeg¨o泛函。我们还提出了一些有趣的观察结果,并提供了所调查结果的相关联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials
. Making use of Gegenbauer polynomials, we initiate and explore two sets of normalized regular and bi-univalent (or bi-Schlicht) functions in D = { z ∈ C : | z | < 1 } linked with Gegenbauer polynomials. We investi-gate certain coefficients bounds and the Fekete-Szeg¨o functional for functions in these families. We also present few interesting observations and provide relevant connections of the results investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信