差分私有多方计算的高效噪声生成协议

Reo Eriguchi, Atsunori Ichikawa, N. Kunihiro, K. Nuida
{"title":"差分私有多方计算的高效噪声生成协议","authors":"Reo Eriguchi, Atsunori Ichikawa, N. Kunihiro, K. Nuida","doi":"10.1109/tdsc.2022.3227568","DOIUrl":null,"url":null,"abstract":"To bound information leakage in outputs of protocols, it is important to construct secure multiparty computation protocols which output differentially private values perturbed by the addition of noise. However, previous noise generation protocols have round and communication complexity growing with differential privacy budgets, or require parties to locally generate non-uniform noise, which makes it difficult to guarantee differential privacy against active adversaries. We propose three kinds of protocols for generating noise drawn from certain distributions providing differential privacy. The two of them generate noise from finite-range variants of the discrete Laplace distribution. For <inline-formula><tex-math notation=\"LaTeX\">$(\\epsilon,\\delta )$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mi>δ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"eriguchi-ieq1-3227568.gif\"/></alternatives></inline-formula>-differential privacy, they only need constant numbers of rounds independent of <inline-formula><tex-math notation=\"LaTeX\">$\\epsilon,\\delta$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mi>δ</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"eriguchi-ieq2-3227568.gif\"/></alternatives></inline-formula> while the previous protocol needs the number of rounds depending on <inline-formula><tex-math notation=\"LaTeX\">$\\delta$</tex-math><alternatives><mml:math><mml:mi>δ</mml:mi></mml:math><inline-graphic xlink:href=\"eriguchi-ieq3-3227568.gif\"/></alternatives></inline-formula>. The two protocols are incomparable as they make a trade-off between round and communication complexity. Our third protocol non-interactively generate shares of noise from the binomial distribution by predistributing keys for a pseudorandom function. It achieves communication complexity independent of <inline-formula><tex-math notation=\"LaTeX\">$\\epsilon$</tex-math><alternatives><mml:math><mml:mi>ε</mml:mi></mml:math><inline-graphic xlink:href=\"eriguchi-ieq4-3227568.gif\"/></alternatives></inline-formula> or <inline-formula><tex-math notation=\"LaTeX\">$\\delta$</tex-math><alternatives><mml:math><mml:mi>δ</mml:mi></mml:math><inline-graphic xlink:href=\"eriguchi-ieq5-3227568.gif\"/></alternatives></inline-formula> for the computational analogue of <inline-formula><tex-math notation=\"LaTeX\">$(\\epsilon,\\delta )$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mi>δ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"eriguchi-ieq6-3227568.gif\"/></alternatives></inline-formula>-differential privacy while the previous protocols require communication complexity depending on <inline-formula><tex-math notation=\"LaTeX\">$\\epsilon$</tex-math><alternatives><mml:math><mml:mi>ε</mml:mi></mml:math><inline-graphic xlink:href=\"eriguchi-ieq7-3227568.gif\"/></alternatives></inline-formula>. We also prove that our protocols can be extended so that they provide differential privacy in the active setting.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"5 1","pages":"4486-4501"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Noise Generation Protocols for Differentially Private Multiparty Computation\",\"authors\":\"Reo Eriguchi, Atsunori Ichikawa, N. Kunihiro, K. Nuida\",\"doi\":\"10.1109/tdsc.2022.3227568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To bound information leakage in outputs of protocols, it is important to construct secure multiparty computation protocols which output differentially private values perturbed by the addition of noise. However, previous noise generation protocols have round and communication complexity growing with differential privacy budgets, or require parties to locally generate non-uniform noise, which makes it difficult to guarantee differential privacy against active adversaries. We propose three kinds of protocols for generating noise drawn from certain distributions providing differential privacy. The two of them generate noise from finite-range variants of the discrete Laplace distribution. For <inline-formula><tex-math notation=\\\"LaTeX\\\">$(\\\\epsilon,\\\\delta )$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mi>δ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\\\"eriguchi-ieq1-3227568.gif\\\"/></alternatives></inline-formula>-differential privacy, they only need constant numbers of rounds independent of <inline-formula><tex-math notation=\\\"LaTeX\\\">$\\\\epsilon,\\\\delta$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mi>δ</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"eriguchi-ieq2-3227568.gif\\\"/></alternatives></inline-formula> while the previous protocol needs the number of rounds depending on <inline-formula><tex-math notation=\\\"LaTeX\\\">$\\\\delta$</tex-math><alternatives><mml:math><mml:mi>δ</mml:mi></mml:math><inline-graphic xlink:href=\\\"eriguchi-ieq3-3227568.gif\\\"/></alternatives></inline-formula>. The two protocols are incomparable as they make a trade-off between round and communication complexity. Our third protocol non-interactively generate shares of noise from the binomial distribution by predistributing keys for a pseudorandom function. It achieves communication complexity independent of <inline-formula><tex-math notation=\\\"LaTeX\\\">$\\\\epsilon$</tex-math><alternatives><mml:math><mml:mi>ε</mml:mi></mml:math><inline-graphic xlink:href=\\\"eriguchi-ieq4-3227568.gif\\\"/></alternatives></inline-formula> or <inline-formula><tex-math notation=\\\"LaTeX\\\">$\\\\delta$</tex-math><alternatives><mml:math><mml:mi>δ</mml:mi></mml:math><inline-graphic xlink:href=\\\"eriguchi-ieq5-3227568.gif\\\"/></alternatives></inline-formula> for the computational analogue of <inline-formula><tex-math notation=\\\"LaTeX\\\">$(\\\\epsilon,\\\\delta )$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mi>δ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\\\"eriguchi-ieq6-3227568.gif\\\"/></alternatives></inline-formula>-differential privacy while the previous protocols require communication complexity depending on <inline-formula><tex-math notation=\\\"LaTeX\\\">$\\\\epsilon$</tex-math><alternatives><mml:math><mml:mi>ε</mml:mi></mml:math><inline-graphic xlink:href=\\\"eriguchi-ieq7-3227568.gif\\\"/></alternatives></inline-formula>. We also prove that our protocols can be extended so that they provide differential privacy in the active setting.\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"5 1\",\"pages\":\"4486-4501\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/tdsc.2022.3227568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/tdsc.2022.3227568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决协议输出中存在的信息泄漏问题,构建受噪声干扰的安全的多方计算协议是非常重要的。然而,以前的噪声生成协议的循环和通信复杂性随着隐私预算的差异而增长,或者要求各方在局部产生非均匀噪声,这使得难以保证对主动对手的差异隐私。我们提出了三种协议,用于从提供差分隐私的特定分布中生成噪声。这两种方法从离散拉普拉斯分布的有限范围变异体中产生噪声。对于(λ,δ) -差分隐私,它们只需要独立于λ的常数轮数,而之前的协议需要依赖于δ的轮数。这两个协议是无可比拟的,因为它们在轮询和通信复杂性之间进行了权衡。我们的第三个协议通过预分配伪随机函数的密钥,非交互地从二项分布中生成噪声份额。对于(λ,δ)差分隐私的计算模拟,它实现了独立于λ或δ的通信复杂度,而以前的协议需要依赖于λ的通信复杂度。我们还证明了我们的协议可以扩展,以便在活动设置中提供不同的隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Noise Generation Protocols for Differentially Private Multiparty Computation
To bound information leakage in outputs of protocols, it is important to construct secure multiparty computation protocols which output differentially private values perturbed by the addition of noise. However, previous noise generation protocols have round and communication complexity growing with differential privacy budgets, or require parties to locally generate non-uniform noise, which makes it difficult to guarantee differential privacy against active adversaries. We propose three kinds of protocols for generating noise drawn from certain distributions providing differential privacy. The two of them generate noise from finite-range variants of the discrete Laplace distribution. For $(\epsilon,\delta )$(ε,δ)-differential privacy, they only need constant numbers of rounds independent of $\epsilon,\delta$ε,δ while the previous protocol needs the number of rounds depending on $\delta$δ. The two protocols are incomparable as they make a trade-off between round and communication complexity. Our third protocol non-interactively generate shares of noise from the binomial distribution by predistributing keys for a pseudorandom function. It achieves communication complexity independent of $\epsilon$ε or $\delta$δ for the computational analogue of $(\epsilon,\delta )$(ε,δ)-differential privacy while the previous protocols require communication complexity depending on $\epsilon$ε. We also prove that our protocols can be extended so that they provide differential privacy in the active setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信