迭代变非线性系统的自适应迭代学习控制设计与分析

Chiang-Ju Chien, Ying-Chung Wang, Feng‐Li Lian
{"title":"迭代变非线性系统的自适应迭代学习控制设计与分析","authors":"Chiang-Ju Chien, Ying-Chung Wang, Feng‐Li Lian","doi":"10.1109/DDCLS.2018.8516070","DOIUrl":null,"url":null,"abstract":"Design of iterative learning controller for continuous-time nonlinear systems with iteration-varying uncertainties is studied in this paper. The iteration-varying uncertainties include initial resetting tracking error, iteration-varying external disturbance, iteration-varying desired trajectory and iteration-varying system parameters. The iteration-varying uncertainties are not required to take any special structure and the uncertain bounds are not necessarily small. All the iteration-varying uncertainties are compensated by an adaptive iterative learning controller with a projection-type adaptive law. We show that the system output can converge to the desired one as close as possible after suitable numbers of learning trials. Compared with the existing papers studying the similar problems, this approach can be used to solve the iterative learning control issue with more general class of nonlinear uncertain systems and achieve better learning performance.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"7 1","pages":"469-474"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and Analysis of Adaptive Iterative Learning Control for Iteration-varying Nonlinear Systems\",\"authors\":\"Chiang-Ju Chien, Ying-Chung Wang, Feng‐Li Lian\",\"doi\":\"10.1109/DDCLS.2018.8516070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design of iterative learning controller for continuous-time nonlinear systems with iteration-varying uncertainties is studied in this paper. The iteration-varying uncertainties include initial resetting tracking error, iteration-varying external disturbance, iteration-varying desired trajectory and iteration-varying system parameters. The iteration-varying uncertainties are not required to take any special structure and the uncertain bounds are not necessarily small. All the iteration-varying uncertainties are compensated by an adaptive iterative learning controller with a projection-type adaptive law. We show that the system output can converge to the desired one as close as possible after suitable numbers of learning trials. Compared with the existing papers studying the similar problems, this approach can be used to solve the iterative learning control issue with more general class of nonlinear uncertain systems and achieve better learning performance.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"7 1\",\"pages\":\"469-474\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8516070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了具有迭代变不确定性的连续非线性系统的迭代学习控制器的设计。迭代变化的不确定性包括初始重置跟踪误差、迭代变化的外部干扰、迭代变化的期望轨迹和迭代变化的系统参数。迭代变化的不确定性不需要采取任何特殊的结构,不确定边界也不一定小。所有的迭代变化不确定性由一个具有投影型自适应律的自适应迭代学习控制器补偿。我们证明,经过适当次数的学习试验后,系统输出可以尽可能地收敛到期望的输出。与已有研究同类问题的论文相比,该方法可用于解决更一般类型的非线性不确定系统的迭代学习控制问题,并获得更好的学习性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Analysis of Adaptive Iterative Learning Control for Iteration-varying Nonlinear Systems
Design of iterative learning controller for continuous-time nonlinear systems with iteration-varying uncertainties is studied in this paper. The iteration-varying uncertainties include initial resetting tracking error, iteration-varying external disturbance, iteration-varying desired trajectory and iteration-varying system parameters. The iteration-varying uncertainties are not required to take any special structure and the uncertain bounds are not necessarily small. All the iteration-varying uncertainties are compensated by an adaptive iterative learning controller with a projection-type adaptive law. We show that the system output can converge to the desired one as close as possible after suitable numbers of learning trials. Compared with the existing papers studying the similar problems, this approach can be used to solve the iterative learning control issue with more general class of nonlinear uncertain systems and achieve better learning performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信