基于学习聚类的线性映射量化去噪

Martin Alain, C. Guillemot, D. Thoreau, P. Guillotel
{"title":"基于学习聚类的线性映射量化去噪","authors":"Martin Alain, C. Guillemot, D. Thoreau, P. Guillotel","doi":"10.1109/ICIP.2016.7533151","DOIUrl":null,"url":null,"abstract":"This paper describes a novel scheme to reduce the quantization noise of compressed videos and improve the overall coding performances. The proposed scheme first consists in clustering noisy patches of the compressed sequence. Then, at the encoder side, linear mappings are learned for each cluster between the noisy patches and the corresponding source patches. The linear mappings are then transmitted to the decoder where they can be applied to perform de-noising. The method has been tested with the HEVC standard, leading to a bitrate saving of up to 9.63%.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"4200-4204"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning clustering-based linear mappings for quantization noise removal\",\"authors\":\"Martin Alain, C. Guillemot, D. Thoreau, P. Guillotel\",\"doi\":\"10.1109/ICIP.2016.7533151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel scheme to reduce the quantization noise of compressed videos and improve the overall coding performances. The proposed scheme first consists in clustering noisy patches of the compressed sequence. Then, at the encoder side, linear mappings are learned for each cluster between the noisy patches and the corresponding source patches. The linear mappings are then transmitted to the decoder where they can be applied to perform de-noising. The method has been tested with the HEVC standard, leading to a bitrate saving of up to 9.63%.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"4200-4204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7533151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7533151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种降低压缩视频量化噪声,提高整体编码性能的新方案。该方法首先对压缩序列的噪声块进行聚类。然后,在编码器端,为每个簇学习噪声补丁和相应源补丁之间的线性映射。然后将线性映射传输到解码器,在那里它们可以应用于执行去噪。该方法已在HEVC标准下进行了测试,比特率节省高达9.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning clustering-based linear mappings for quantization noise removal
This paper describes a novel scheme to reduce the quantization noise of compressed videos and improve the overall coding performances. The proposed scheme first consists in clustering noisy patches of the compressed sequence. Then, at the encoder side, linear mappings are learned for each cluster between the noisy patches and the corresponding source patches. The linear mappings are then transmitted to the decoder where they can be applied to perform de-noising. The method has been tested with the HEVC standard, leading to a bitrate saving of up to 9.63%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信