基于分割矢量量化的神经脉冲压缩植入式bmi

Nazanin Ahmadi Dastgerdi, Hossein Hoseini-Nejad, H. Amiri
{"title":"基于分割矢量量化的神经脉冲压缩植入式bmi","authors":"Nazanin Ahmadi Dastgerdi, Hossein Hoseini-Nejad, H. Amiri","doi":"10.1109/IranianCEE.2019.8786761","DOIUrl":null,"url":null,"abstract":"This paper reports a novel spike compression approach for implantable intra-cortical neural recording microsystems based on Split Vector Quantization (SVQ). The proposed method presents a spike compression ratio 14.8 at the cost of classification accuracy (CA). The average value of CA is 94% over a wide range (7 to 15) of signal to noise ratios (SNR) of the neural signal.","PeriodicalId":6683,"journal":{"name":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","volume":"24 1","pages":"1779-1782"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Spike Compression Based on Split Vector Quantization for Implantable BMIs\",\"authors\":\"Nazanin Ahmadi Dastgerdi, Hossein Hoseini-Nejad, H. Amiri\",\"doi\":\"10.1109/IranianCEE.2019.8786761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a novel spike compression approach for implantable intra-cortical neural recording microsystems based on Split Vector Quantization (SVQ). The proposed method presents a spike compression ratio 14.8 at the cost of classification accuracy (CA). The average value of CA is 94% over a wide range (7 to 15) of signal to noise ratios (SNR) of the neural signal.\",\"PeriodicalId\":6683,\"journal\":{\"name\":\"2019 27th Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"24 1\",\"pages\":\"1779-1782\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IranianCEE.2019.8786761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IranianCEE.2019.8786761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一种基于分裂矢量量化(SVQ)的可植入皮质内神经记录微系统的脉冲压缩方法。该方法的峰值压缩比为14.8,但代价是分类精度(CA)降低。在神经信号的信噪比(SNR)的宽范围内(7 ~ 15),CA的平均值为94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Spike Compression Based on Split Vector Quantization for Implantable BMIs
This paper reports a novel spike compression approach for implantable intra-cortical neural recording microsystems based on Split Vector Quantization (SVQ). The proposed method presents a spike compression ratio 14.8 at the cost of classification accuracy (CA). The average value of CA is 94% over a wide range (7 to 15) of signal to noise ratios (SNR) of the neural signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信